Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Pathog ; 20(2): e1011889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408115

RESUMO

Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG9, which is highly expressed in stumpy forms, a morphologically distinct bloodstream stage adapted for tsetse transmission. This regulator, TbREG9.1, has an orthologue in Trypanosoma congolense, despite the absence of a stumpy morphotype in that parasite species, which is an important cause of livestock trypanosomosis. RNAi mediated gene silencing of TcREG9.1 in Trypanosoma congolense caused a loss of attachment of the parasites to a surface substrate in vitro, a key feature of the biology of these parasites that is distinct from T. brucei. This detachment was phenocopied by treatment of the parasites with a phosphodiesterase inhibitor, which also promotes detachment in the insect trypanosomatid Crithidia fasciculata. RNAseq analysis revealed that TcREG9.1 silencing caused the upregulation of mRNAs for several classes of surface molecules, including transferrin receptor-like molecules, immunoreactive proteins in experimental bovine infections, and molecules related to those associated with stumpy development in T. brucei. Depletion of TcREG9.1 in vivo also generated an enhanced level of parasites in the blood circulation consistent with reduced parasite attachment to the microvasculature. The morphological progression to insect forms of the parasite was also perturbed. We propose a model whereby TcREG9.1 acts as a regulator of attachment and development, with detached parasites being adapted for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Animais , Bovinos , Trypanosoma brucei brucei/fisiologia , Interferência de RNA , Inativação Gênica
2.
Proc Biol Sci ; 289(1967): 20212155, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042410

RESUMO

Laboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation. While pathogen-immune interactions have been detailed elsewhere, here we examine the use of ecological and experimental studies of trypanosome and malaria infections to discuss the interactions between pathogens in mammal hosts and arthropod vectors, including recently developed laboratory models for co-infection. The implications of pathogen co-infection for disease therapy are also discussed.


Assuntos
Coinfecção , Malária , Parasitos , Trypanosoma , Animais , Interações Hospedeiro-Parasita , Mamíferos
3.
Trends Parasitol ; 36(3): 266-278, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014419

RESUMO

African trypanosomes are mainly transmitted by tsetse flies. In recent years there has been good progress in understanding how the parasites prepare for transmission, detect their changed environment through the perception of different environmental cues, and respond by changing their developmental gene expression. In this review, we discuss the different signals and signaling mechanisms used by the parasites to carry out the early events necessary for their establishment in the fly. We also compare Trypanosoma brucei and Trypanosoma congolense, parasites that share a common pathway in the early stages of fly colonization but apparently use different mechanisms to achieve this.


Assuntos
Meio Ambiente , Trypanosoma/fisiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Transdução de Sinais/fisiologia , Trypanosoma/crescimento & desenvolvimento
4.
Parasit Vectors ; 12(1): 190, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036044

RESUMO

African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a 'golden age' of discovery for these fascinating parasites.


Assuntos
Interações Hospedeiro-Parasita , Insetos Vetores/parasitologia , Trypanosoma/genética , Moscas Tsé-Tsé/parasitologia , África Subsaariana/epidemiologia , Animais , Humanos , Trypanosoma/classificação , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/transmissão
5.
Cell ; 176(1-2): 306-317.e16, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30503212

RESUMO

Trypanosome parasites control their virulence and spread by using quorum sensing (QS) to generate transmissible "stumpy forms" in their host bloodstream. However, the QS signal "stumpy induction factor" (SIF) and its reception mechanism are unknown. Although trypanosomes lack G protein-coupled receptor signaling, we have identified a surface GPR89-family protein that regulates stumpy formation. TbGPR89 is expressed on bloodstream "slender form" trypanosomes, which receive the SIF signal, and when ectopically expressed, TbGPR89 drives stumpy formation in a SIF-pathway-dependent process. Structural modeling of TbGPR89 predicts unexpected similarity to oligopeptide transporters (POT), and when expressed in bacteria, TbGPR89 transports oligopeptides. Conversely, expression of an E. coli POT in trypanosomes drives parasite differentiation, and oligopeptides promote stumpy formation in vitro. Furthermore, the expression of secreted trypanosome oligopeptidases generates a paracrine signal that accelerates stumpy formation in vivo. Peptidase-generated oligopeptide QS signals being received through TbGPR89 provides a mechanism for both trypanosome SIF production and reception.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Percepção de Quorum/fisiologia , Trypanosoma/metabolismo , Diferenciação Celular , Sequência Conservada/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana Transportadoras/genética , Oligopeptídeos/genética , Oligopeptídeos/fisiologia , Filogenia , Proteínas de Protozoários/metabolismo , Percepção de Quorum/genética , Transdução de Sinais , Trypanosoma/fisiologia , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Virulência/fisiologia
6.
PLoS Negl Trop Dis ; 12(10): e0006863, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30307943

RESUMO

In the bloodstream of mammalian hosts Trypanosoma brucei undergoes well-characterised density-dependent growth control and developmental adaptation for transmission. This involves the differentiation from proliferative, morphologically 'slender' forms to quiescent 'stumpy' forms that preferentially infect the tsetse fly vector. Another important livestock trypanosome, Trypanosoma congolense, also undergoes density-dependent cell-cycle arrest although this is not linked to obvious morphological transformation. Here we have compared the gene expression profile of T. brucei and T. congolense during the ascending phase of the parasitaemia and at peak parasitaemia in mice, analysing species and developmental differences between proliferating and cell-cycle arrested forms. Despite underlying conservation of their quorum sensing signalling pathway, each species exhibits distinct profiles of gene regulation when analysed by orthogroup and cell surface phylome profiling. This analysis of peak parasitaemia T. congolense provides the first molecular signatures of potential developmental competence, assisting life cycle developmental studies in these important livestock parasites. Furthermore, comparison with T. brucei identifies candidate molecules from each species that may be important for their survival in the mammalian host, transmission or distinct tropism in the tsetse vector.


Assuntos
Adaptação Biológica , Sangue/parasitologia , Perfilação da Expressão Gênica , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/genética , Trypanosoma congolense/crescimento & desenvolvimento , Trypanosoma congolense/genética , Animais , Estágios do Ciclo de Vida , Camundongos , Parasitemia/parasitologia
7.
PLoS Pathog ; 14(6): e1007145, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29940034

RESUMO

Trypanosoma brucei, the agents of African trypanosomiasis, undergo density-dependent differentiation in the mammalian bloodstream to prepare for transmission by tsetse flies. This involves the generation of cell-cycle arrested, quiescent, stumpy forms from proliferative slender forms. The signalling pathway responsible for the quorum sensing response has been catalogued using a genome-wide selective screen, providing a compendium of signalling protein kinases phosphatases, RNA binding proteins and hypothetical proteins. However, the ordering of these components is unknown. To piece together these components to provide a description of how stumpy formation arises we have used an extragenic suppression approach. This exploited a combinatorial gene knockout and overexpression strategy to assess whether the loss of developmental competence in null mutants of pathway components could be compensated by ectopic expression of other components. We have created null mutants for three genes in the stumpy induction factor signalling pathway (RBP7, YAK, MEKK1) and evaluated complementation by expression of RBP7, NEK17, PP1-6, or inducible gene silencing of the proposed differentiation inhibitor TbTOR4. This indicated that the signalling pathway is non-linear. Phosphoproteomic analysis focused on one pathway component, a putative MEKK, identified molecules with altered expression and phosphorylation profiles in MEKK1 null mutants, including another component in the pathway, NEK17. Our data provide a first molecular dissection of multiple components in a signal transduction cascade in trypanosomes.


Assuntos
Sangue/parasitologia , Proteínas de Protozoários/metabolismo , Percepção de Quorum , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia , Animais , Diferenciação Celular , Genoma , Camundongos , Fosforilação , Proteínas de Protozoários/genética , Proteínas de Ligação a RNA/genética , Trypanosoma brucei brucei/genética
8.
PLoS Negl Trop Dis ; 12(2): e0006280, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29474390

RESUMO

All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.


Assuntos
Perfilação da Expressão Gênica , RNA de Protozoário/isolamento & purificação , Transcriptoma , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/isolamento & purificação , Tripanossomíase Africana/parasitologia , Animais , Técnicas Bacteriológicas/métodos , DNA de Cinetoplasto/genética , Humanos , Proteínas Quinases/genética , Proteínas de Protozoários/genética , RNA Mensageiro/genética , RNA de Protozoário/genética , Proteínas de Ligação a RNA/genética , Ratos , Roedores/parasitologia , Trypanosoma brucei rhodesiense/crescimento & desenvolvimento , Trypanosoma brucei rhodesiense/metabolismo , Tripanossomíase Africana/sangue , Tripanossomíase Africana/líquido cefalorraquidiano
9.
Nat Microbiol ; 2(11): 1471-1479, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28871083

RESUMO

Quorum sensing (QS) is commonly used in microbial communities and some unicellular parasites to coordinate group behaviours 1,2 . An example is Trypanosoma brucei, which causes human African trypanosomiasis, as well as the livestock disease, nagana. Trypanosomes are spread by tsetse flies, their transmission being enabled by cell-cycle arrested 'stumpy forms' that are generated in a density-dependent manner in mammalian blood. QS is mediated through a small (<500 Da), non-proteinaceous, stable but unidentified 'stumpy induction factor' 3 , whose signal response pathway has been identified. Although QS is characterized in T. brucei, co-infections with other trypanosome species (Trypanosoma congolense and Trypanosoma vivax) are common in animals, generating the potential for interspecies interactions. Here, we show that T. congolense exhibits density-dependent growth control in vivo and conserves QS regulatory genes, of which one can complement a T. brucei QS signal-blind mutant to restore stumpy formation. Thereafter, we demonstrate that T. congolense-conditioned culture medium promotes T. brucei stumpy formation in vitro, which is dependent on the integrity of the QS signalling pathway. Finally, we show that, in vivo, co-infection with T. congolense accelerates differentiation to stumpy forms in T. brucei, which is also QS dependent. These cross-species interactions have important implications for trypanosome virulence, transmission, competition and evolution in the field.


Assuntos
Percepção de Quorum , Trypanosoma congolense/genética , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/transmissão , Animais , Diferenciação Celular , Coinfecção , Genes Reguladores , Humanos , Mutação com Perda de Função , Camundongos , Transdução de Sinais , Trypanosoma brucei brucei/patogenicidade , Trypanosoma brucei brucei/fisiologia , Trypanosoma congolense/crescimento & desenvolvimento , Trypanosoma congolense/patogenicidade , Trypanosoma vivax/patogenicidade , Trypanosoma vivax/fisiologia
10.
Pathogens ; 6(3)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657594

RESUMO

African trypanosomes cause devastating disease in sub-Saharan Africa in humans and livestock. The parasite lives extracellularly within the bloodstream of mammalian hosts and is transmitted by blood-feeding tsetse flies. In the blood, trypanosomes exhibit two developmental forms: the slender form and the stumpy form. The slender form proliferates in the bloodstream, establishes the parasite numbers and avoids host immunity through antigenic variation. The stumpy form, in contrast, is non-proliferative and is adapted for transmission. Here, we overview the features of slender and stumpy form parasites in terms of their cytological and molecular characteristics and discuss how these contribute to their distinct biological functions. Thereafter, we describe the technical developments that have enabled recent discoveries that uncover how the slender to stumpy transition is enacted in molecular terms. Finally, we highlight new understanding of how control of the balance between slender and stumpy form parasites interfaces with other components of the infection dynamic of trypanosomes in their mammalian hosts. This interplay between the host environment and the parasite's developmental biology may expose new vulnerabilities to therapeutic attack or reveal where drug control may be thwarted by the biological complexity of the parasite's lifestyle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA