Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538993

RESUMO

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Antígeno B7-2
2.
Front Aging Neurosci ; 14: 890823, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754955

RESUMO

There has been long-term interest in drugging the PINK1-Parkin pathway with therapeutics as a treatment for Parkinson's disease (PD). Despite significant structural data on Parkin as well as the PINK1 kinase and the multiple conformational changes it undergoes, activation of these targets is non-trivial. This review highlights small molecule screening results that suggests that activation of Parkin biochemically does not necessarily translate to activation of Parkin within cells. There are also issues with activation of PINK1 with kinetin analogs, which do not appear to rescue rodent models of PD. The counter-measure of activating the mitophagy pathway with deubiquitinase (DUB) inhibitors such as USP30 inhibitors is progressing in the clinic for kidney disease and the proof of biology for this target will be tested in these trials. An alternative mechanism of activating Parkin in response to oxidative stress via Parkin phosphorylation by the AMPK-ULK1 pathway may be a simpler way to lower the energy barrier Parkin activation.

3.
iScience ; 25(1): 103650, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024585

RESUMO

Pharmacological activation of the E3 ligase Parkin represents a rational therapeutic intervention for the treatment of Parkinson's disease. Here we identify several compounds that enhance the activity of wildtype Parkin in the presence of phospho-ubiquitin and act as positive allosteric modulators (PAMs). While these compounds activate Parkin in a series of biochemical assays, they do not act by thermally destabilizing Parkin and fail to enhance the Parkin translocation rate to mitochondria or to enact mitophagy in cell-based assays. We conclude that in the context of the cellular milieu the therapeutic window to pharmacologically activate Parkin is very narrow.

4.
Sci Rep ; 8(1): 13438, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194389

RESUMO

Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aß-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Espinhas Dendríticas/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Sinapses/metabolismo , Animais , Encéfalo/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Espinhas Dendríticas/patologia , Desenho de Fármacos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/metabolismo , Domínios PDZ , Receptores de AMPA/metabolismo , Sinapses/patologia
5.
Protein Sci ; 27(3): 672-680, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29280296

RESUMO

The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1-GluA2 protein-protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1-GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure-aided drug design but were unsuccessful in producing a co-crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co-crystal structure of the PDZ domain of PICK1 bound to BIO124.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cristalografia , Desenho de Fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Domínios PDZ , Ligação Proteica/efeitos dos fármacos , Receptores de AMPA/metabolismo , Relação Estrutura-Atividade
6.
Protein Sci ; 26(2): 152-162, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27727493

RESUMO

Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.


Assuntos
Mutação de Sentido Incorreto , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Substituição de Aminoácidos , Cristalografia por Raios X , Humanos , Domínios Proteicos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Estrutura Secundária de Proteína
7.
PLoS One ; 11(11): e0165983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832137

RESUMO

MLKL is a pore forming pseudokinase involved in the final stage of necroptosis, a form of programmed cell death. Its phosphorylation by RIPK3 is necessary for triggering necroptosis but not for triggering apoptosis, which makes it a unique target for pharmacological inhibition to block necroptotic cell death. This mechanism has been described as playing a role in disease progression in neurodegenerative and inflammatory diseases. A type II kinase inhibitor (cpd 1) has been described that reportedly binds to the MLKL pseudokinase domain and prevents necroptosis. Here we describe five compounds that bind to the MLKL ATP-binding site, however the four MLKL-selective compounds have no activity in rescuing cells from necroptosis. We use kinase selectivity panels, crystallography and a new conformationally sensitive method of measuring protein conformational changes (SHG) to confirm that the one previously reported compound that can rescue cells (cpd 1) is a non-selective type II inhibitor that also inhibits the upstream kinase RIPK1. Although this compound can shift the GFE motif of the activation loop to an "out" position, the accessibility of the key residue Ser358 in the MLKL activation loop is not affected by compound binding to the MLKL active site. Our studies indicate that an ATP-pocket inhibitor of the MLKL pseudokinase domain does not have any impact on the necroptosis pathway, which is contrary to a previously reported study.


Assuntos
Trifosfato de Adenosina/metabolismo , Morte Celular/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Células Jurkat , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas Quinases/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
8.
BMC Struct Biol ; 16(1): 7, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27246200

RESUMO

BACKGROUND: The nuclear hormone receptor RORγ regulates transcriptional genes involved in the production of the pro-inflammatory interleukin IL-17 which has been linked to autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. This transcriptional activity of RORγ is modulated through a protein-protein interaction involving the activation function 2 (AF2) helix on the ligand binding domain of RORγ and a conserved LXXLL helix motif on coactivator proteins. Our goal was to develop a RORγ specific inverse agonist that would help down regulate pro-inflammatory gene transcription by disrupting the protein protein interaction with coactivator proteins as a therapeutic agent. RESULTS: We identified a novel series of synthetic benzoxazinone ligands having an agonist (BIO592) and inverse agonist (BIO399) mode of action in a FRET based assay. We show that the AF2 helix of RORγ is proteolytically sensitive when inverse agonist BIO399 binds. Using x-ray crystallography we show how small modifications on the benzoxazinone agonist BIO592 trigger inverse agonism of RORγ. Using an in vivo reporter assay, we show that the inverse agonist BIO399 displayed specificity for RORγ over ROR sub-family members α and ß. CONCLUSION: The synthetic benzoxazinone ligands identified in our FRET assay have an agonist (BIO592) or inverse agonist (BIO399) effect by stabilizing or destabilizing the agonist conformation of RORγ. The proteolytic sensitivity of the AF2 helix of RORγ demonstrates that it destabilizes upon BIO399 inverse agonist binding perturbing the coactivator protein binding site. Our structural investigation of the BIO592 agonist and BIO399 inverse agonist structures identified residue Met358 on RORγ as the trigger for RORγ specific inverse agonism.


Assuntos
Benzoxazinas/química , Agonismo Inverso de Drogas , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Benzoxazinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Simulação de Dinâmica Molecular , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
9.
ACS Chem Biol ; 6(6): 636-47, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21417339

RESUMO

BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 µM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.


Assuntos
Ligante de CD40/antagonistas & inibidores , Piridinas/farmacologia , Pirrolidinas/farmacologia , Animais , Antígenos CD40/imunologia , Antígenos CD40/isolamento & purificação , Ligante de CD40/imunologia , Ligante de CD40/isolamento & purificação , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Humanos , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Modelos Moleculares , Estrutura Molecular , Peso Molecular , Ligação Proteica/efeitos dos fármacos , Piridinas/síntese química , Piridinas/química , Pirrolidinas/síntese química , Pirrolidinas/química
10.
Protein Sci ; 19(3): 429-39, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20052711

RESUMO

Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 A resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 A resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.


Assuntos
Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/metabolismo , Tirosina Quinase da Agamaglobulinemia , Sequência de Aminoácidos , Cristalografia por Raios X , Dasatinibe , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/química , Pirróis/química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA