Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612553

RESUMO

Mesenchymal stem/stromal cells (MSCs) are an extensively studied cell type in clinical trials due to their easy availability, substantial ex vivo proliferative capacity, and therapeutic efficacy in numerous pre-clinical animal models of disease. The prevailing understanding suggests that their therapeutic impact is mediated by the secretion of exosomes. Notably, MSC exosomes present several advantages over MSCs as therapeutic agents, due to their non-living nature and smaller size. However, despite their promising therapeutic potential, the clinical translation of MSC exosomes is hindered by an incomplete understanding of their biodistribution after administration. A primary obstacle to this lies in the lack of robust labels that are highly sensitive, capable of directly and easily tagging exosomes with minimal non-specific labeling artifacts, and sensitive traceability with minimal background noise. One potential candidate to address this issue is radioactive iodine. Protocols for iodinating exosomes and tracking radioactive iodine in live imaging are well-established, and their application in determining the biodistribution of exosomes has been reported. Nevertheless, the effects of iodination on the structural or functional activities of exosomes have never been thoroughly examined. In this study, we investigate these effects and report that these iodination methods abrogate CD73 enzymatic activity on MSC exosomes. Consequently, the biodistribution of iodinated exosomes may reflect the biodistribution of denatured exosomes rather than functionally intact ones.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Neoplasias da Glândula Tireoide , Animais , Radioisótopos do Iodo , Distribuição Tecidual
2.
J Biomed Sci ; 31(1): 9, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233833

RESUMO

Extracellular vesicles (EVs) are tiny, lipid membrane-bound structures that are released by most cells. They play a vital role in facilitating intercellular communication by delivering bioactive cargoes to recipient cells and triggering cellular as well as biological responses. EVs have enormous potential for therapeutic applications as native or engineered exosomes. Native EVs are naturally released by cells without undergoing any modifications to either the exosomes or the cells that secrete them. In contrast, engineered EVs have been deliberately modified post-secretion or through genetic engineering of the secreting cells to alter their composition. Here we propose that engineered EVs displaying pathogen proteins could serve as promising alternatives to lipid nanoparticle (LNP)-mRNA vaccines. By leveraging their unique characteristics, these engineered EVs have the potential to overcome certain limitations associated with LNP-mRNA vaccines.


Assuntos
Exossomos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Vacinas , Vacinas de mRNA , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Exossomos/genética , Vacinas/genética
3.
Biomolecules ; 13(10)2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37892183

RESUMO

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint inflammation and damage, often associated with an imbalance in M1/M2 macrophages. Elevated levels of anti-inflammatory M2 macrophages have been linked to a therapeutic response in RA. We have previously demonstrated that mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) promote M2 polarization and hypothesized that MSC-sEVs could alleviate RA severity with a concomitant increase in M2 polarization. Here, we treated a mouse model of collagen-induced arthritis (CIA) with MSC-sEVs. Relative to vehicle-treated CIA mice, both low (1 µg) and high (10 µg) doses of MSC-sEVs were similarly efficacious but not as efficacious as Prednisolone, the positive control. MSC-sEV treatment resulted in statistically significant reductions in disease progression rate and disease severity as measured by arthritic index (AI), anti-CII antibodies, IL-6, and C5b-9 plasma levels. There were no statistically significant differences in the treatment outcome between low (1 µg) and high (10 µg) doses of MSC-sEVs. Furthermore, immunohistochemical analysis revealed that concomitant with the therapeutic efficacy, MSC-sEV treatment increased anti-inflammatory M2 macrophages and decreased pro-inflammatory M1 macrophages in the synovium. Consistent with increased M2 macrophages, histopathological examination also revealed reduced inflammation, pannus formation, cartilage damage, bone resorption, and periosteal new bone formation in the MSC-sEV-treated group compared to the vehicle group. These findings suggest that MSC-sEVs are potential biologic disease-modifying antirheumatic drugs (DMARDs) that can help slow or halt RA joint damage and preserve joint function.


Assuntos
Antirreumáticos , Artrite Experimental , Artrite Reumatoide , Vesículas Extracelulares , Camundongos , Animais , Artrite Reumatoide/patologia , Macrófagos , Antirreumáticos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Células Estromais/patologia
4.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37175803

RESUMO

Mesenchymal stem/stromal cell small extracellular vesicles (MSC-sEVs) have shown promise in treating a wide range of animal models of various human diseases, which has led to their consideration for clinical translation. However, the possibility of contraindication for MSC-sEV use is an important consideration. One concern is that MSC-sEVs have been shown to induce M2 macrophage polarization, which is known to be pro-fibrotic, potentially indicating contraindication in fibrotic diseases such as liver fibrosis. Despite this concern, previous studies have shown that MSC-sEVs alleviate high-fat diet (HFD)-induced non-alcoholic steatohepatitis (NASH). To assess whether the pro-fibrotic M2 macrophage polarization induced by MSC-sEVs could worsen liver fibrosis, we first verified that our MSC-sEV preparations could promote M2 polarization in vitro prior to their administration in a mouse model of NASH. Our results showed that treatment with MSC-sEVs reduced or had comparable NAFLD Activity Scores and liver fibrosis compared to vehicle- and Telmisartan-treated animals, respectively. Although CD163+ M2 macrophages were increased in the liver, and serum IL-6 levels were reduced in MSC-sEV treated animals, our data suggests that MSC-sEV treatment was efficacious in reducing liver fibrosis in a mouse model of NASH despite an increase in pro-fibrotic M2 macrophage polarization.


Assuntos
Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Cirrose Hepática/terapia , Macrófagos , Modelos Animais de Doenças
5.
Cytotherapy ; 25(8): 815-820, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37115163

RESUMO

The most clinically trialed cells, mesenchymal stromal cells (MSCs), are now known to mainly exert their therapeutic activity through paracrine secretions, which include exosomes. To mitigate potential regulatory concerns on the scalability and reproducibility in the preparations of MSC exosomes, MSC exosomes were produced using a highly characterized MYC-immortalized monoclonal cell line. These cells do not form tumors in athymic nude mice or exhibit anchorage-independent growth, and their exosomes do not carry MYC protein or promote tumor growth. Unlike intra-peritoneal injections, topical applications of MSC exosomes in a mouse model of IMQ-induced psoriasis alleviate interleukin (IL)-17, IL-23 and terminal complement complex, C5b9 in psoriatic skin. When applied on human skin explants, fluorescence from covalently labeled fluorescent MSC exosomes permeated and persisted in the stratum corneum for about 24 hours with negligible exit out of the stratum corneum into the underlying epidermis. As psoriatic stratum corneums are uniquely characterized by activated complements and Munro microabscesses, we postulated that topically applied exosomes permeate the psoriatic stratum corneum to inhibit C5b9 complement complex through CD59, and this inhibition attenuated neutrophil secretion of IL-17. Consistent with this, we demonstrated that assembly of C5b9 on purified human neutrophils induced IL-17 secretion and this induction was abrogated by MSC exosomes, which was in turn abrogated by a neutralizing anti-CD 59 antibody. We thus established the mechanism of action for the alleviation of psoriatic IL-17 by topically applied exosomes.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Psoríase , Animais , Camundongos , Humanos , Exossomos/metabolismo , Interleucina-17 , Camundongos Nus , Reprodutibilidade dos Testes , Psoríase/terapia , Células-Tronco Mesenquimais/metabolismo
6.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918628

RESUMO

Mesenchymal-stem/stromal-cell-derived small extracellular vesicles (MSC-sEV) have been shown to ameliorate many diseases in preclinical studies. However, translating MSC-sEV into clinical use requires the development of scalable manufacturing processes for highly reproducible preparations of safe and potent MSC-sEVs. A major source of variability in MSC-sEV preparations is EV producer cells. To circumvent variability in producer cells, clonal immortalized MSC lines as EV producer lines are increasingly being used for sEV production. The use of sEVs from immortalized producer cells inevitably raises safety concerns regarding the tumorigenicity or tumor promoting potential of the EV products. In this study, cells from E1-MYC line, a MSC cell line immortalized with the MYC gene, were injected subcutaneously into athymic nude mice. At 84 days post-injection, no tumor formation was observed at the injection site, lungs, or lymph nodes. E1-MYC cells pre-and post-sEV production did not exhibit anchorage-independent growth in soft agar. Daily intraperitoneal injections of 1 or 5 µg sEVs from E1-MYC into athymic nude mice with FaDu human head and neck cancer xenografts for 28 days did not promote or inhibit tumor growth relative to the xenograft treated with vehicle control. Therefore, MYC-immortalized MSCs are not tumorigenic and sEVs from these MSCs do not promote tumor growth.

7.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450859

RESUMO

Severe psoriasis, a chronic inflammatory skin disease is increasingly being effectively managed by targeted immunotherapy but long-term immunotherapy poses health risk and loss of response. Therefore, there is a need for alternative therapy strategies. Mesenchymal stem/stromal cell (MSC) exosomes are widely known for their potent immunomodulatory properties. Here we investigated if topically applied MSC exosomes could alleviate psoriasis-associated inflammation. Topically applied fluorescent exosomes on human skin explants were confined primarily to the stratum corneum with <1% input fluorescence exiting the explant over a 24-h period. Nevertheless, topically applied MSC exosomes in a mouse model of imiquimod (IMQ) psoriasis significantly reduced IL-17 and terminal complement activation complex C5b-9 in the mouse skin. MSC exosomes were previously shown to inhibit complement activation, specifically C5b-9 complex formation through CD59. Infiltration of neutrophils into the stratum corneum is characteristic of psoriasis and neutrophils are a major cellular source of IL-17 in psoriasis through the release of neutrophil extracellular traps (NETs). We propose that topically applied MSC exosomes inhibit complement activation in the stratum corneum and this alleviates IL-17 release by NETS from neutrophils that accumulate in and beneath the stratum corneum.


Assuntos
Exossomos/metabolismo , Imiquimode/efeitos adversos , Células-Tronco Mesenquimais/metabolismo , Psoríase/etiologia , Psoríase/patologia , Administração Tópica , Animais , Biomarcadores , Biópsia , Modelos Animais de Doenças , Camundongos , Permeabilidade , Fenótipo , Psoríase/terapia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Absorção Cutânea
8.
J Extracell Vesicles ; 6(1): 1408390, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296254

RESUMO

Circulating extracellular vesicles (EVs) such as cholera toxin B chain (CTB)- or annexin V (AV)-binding EVs were previously shown to be rich sources of biomarkers. Here we test if previously identified pre-eclampsia (PE) candidate biomarkers, TIMP-1 in CTB-EVs (CTB-TIMP) and PAI-1 in AV-EVs (AV-PAI) complement plasma PlGF in predicting PE in a low-risk obstetric population. Eight hundred and forty-three prospectively banked plasma samples collected at 28 + 0 to 32 + 0 gestation weeks in the Neonatal and Obstetrics Risk Assessment (NORA) cohort study were assayed by sandwich ELISAs for plasma PlGF, CTB-TIMP1 and AV-PAI1. Nineteen patients subsequently developed PE 7.3 (±2.9) weeks later at a mean gestational age of 36.1 ± 3.5 weeks. The biomarkers were assessed for their predictive accuracy for PE using stepwise multivariate logistic regression analysis with Firth correction and Areas under the curve (AUC). To achieve 100% sensitivity in predicting PE, the cut-off for plasma PlGF, CTB-TIMP1 & AV-PAI1 were set at <1235, ≤300 or >1300 and <10,550 pg/mL plasma, respectively. The corresponding AUCs, specificity and PPV at a 95% confidence interval were 0.92, 52.1% and 4.7%; 0.72, 44.5% and 4.0%; and 0.69, 21.5% and 2.9%, respectively. At 100% sensitivity, the three biomarkers had a combined AUC of 0.96, specificity of 78.6%, and PPV of 9.9%. This is the first large cohort validation of the utility of EV-associated analytes as disease biomarkers. Specifically, EV biomarkers enhanced the predictive robustness of an existing PE biomarker sufficiently to justify PE screening in a low-risk general obstetric population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA