Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37883653

RESUMO

Tumor hypoxia poses a significant challenge in photodynamic therapy (PDT), which uses molecular oxygen to produce reactive oxygen species upon light excitation of a photosensitizer. For hypoxia mitigation, an enzyme catalase (CAT) can be beneficially used to convert intracellular hydrogen peroxide to molecular oxygen, but its utility is significantly limited due to the intrinsic membrane impermeability. Herein, we present direct integration of CAT into the outer surface of unmodified metal-organic framework (MOF) nanoparticles (NPs) via supramolecular interactions for effective cellular entry of CAT and consequent enhancement of PDT. The results demonstrated that CAT-loaded MOF NPs could successfully enter hypoxic cancer cells, after which the intracellularly delivered CAT molecules became dissociated from the MOF surface to efficiently initiate the oxygen generation and PDT process along with a co-delivered photosensitizer IR780. This achievement suggests that our protein-MOF integration strategy holds great potential in biomedical studies to overcome tumor hypoxia as well as to efficiently deliver biomolecular cargos.

2.
J Am Chem Soc ; 145(40): 21991-22008, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37664981

RESUMO

Senolytics, which eliminate senescent cells from tissues, represent an emerging therapeutic strategy for various age-related diseases. Most senolytics target antiapoptotic proteins, which are overexpressed in senescent cells, limiting specificity and inducing severe side effects. To overcome these limitations, we constructed self-assembling senolytics targeting senescent cells with an intracellular oligomerization system. Intracellular aryl-dithiol-containing peptide oligomerization occurred only inside the mitochondria of senescent cells due to selective localization of the peptides by RGD-mediated cellular uptake into integrin αvß3-overexpressed senescent cells and elevated levels of reactive oxygen species, which can be used as a chemical fuel for disulfide formation. This oligomerization results in an artificial protein-like nanoassembly with a stable α-helix secondary structure, which can disrupt the mitochondrial membrane via multivalent interactions because the mitochondrial membrane of senescent cells has weaker integrity than that of normal cells. These three specificities (integrin αvß3, high ROS, and weak mitochondrial membrane integrity) of senescent cells work in combination; therefore, this intramitochondrial oligomerization system can selectively induce apoptosis of senescent cells without side effects on normal cells. Significant reductions in key senescence markers and amelioration of retinal degeneration were observed after elimination of the senescent retinal pigment epithelium by this peptide senolytic in an age-related macular degeneration mouse model and in aged mice, and this effect was accompanied by improved visual function. This system provides a strategy for the treatment of age-related diseases using supramolecular senolytics.


Assuntos
Senescência Celular , Senoterapia , Camundongos , Animais , Espécies Reativas de Oxigênio , Peptídeos/farmacologia , Integrinas
3.
Small ; 18(7): e2107006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35006648

RESUMO

A new synthetic approach for tunable mesoporous metal-organic frameworks (MeMs) is developed. In this approach, mesopores are created in the process of heat conversion of highly mosaic metal-organic framework (MOF) crystals with non-interpenetrated low-density nanocrystallites into MOF crystals with two-fold interpenetrated high-density nanocrystallites. The two-fold interpenetration reduces the volume of the nanocrystallites in the mosaic crystal, and the accompanying localized agglomeration of the nanocrystallites results in the formation of mesopores among the localized crystallite agglomerates. The pore size can be easily modulated from 7 to 90 nm by controlling the heat treatment conditions, that is, the aging temperature and aging time. Various proteins can be encapsulated in the MeM, and immobilized enzymes show catalyst activity comparable to that of the free native enzymes. Immobilized ß-galactosidase is recyclable and the enzyme activity of the immobilized catalase is maintained after exposure to high temperatures and various organic solvents.


Assuntos
Enzimas Imobilizadas , Estruturas Metalorgânicas , Catálise , Enzimas Imobilizadas/metabolismo , Estruturas Metalorgânicas/química , Temperatura
4.
ACS Nano ; 15(9): 14492-14508, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34478266

RESUMO

Recent advances in supramolecular chemistry research have led to the development of artificial chemical systems that can form self-assembled structures that imitate proteins involved in the regulation of cellular function. However, intracellular polymerization systems that operate inside living cells have been seldom reported. In this study, we developed an intramitochondrial polymerization-induced self-assembly system for regulating the cellular fate of cancer cells. It showed that polymeric disulfide formation inside cells occurred due to the high reactive oxygen species (ROS) concentration of cancer mitochondria. This polymerization barely occurs elsewhere in the cell owing to the reductive intracellular environment. The polymerization of the thiol-containing monomers further increases the ROS level inside the mitochondria, thereby autocatalyzing the polymerization process and creating fibrous polymeric structures. This process induces dysfunction of the mitochondria, which in turn activates cell necroptosis. Thus, this in situ polymerization system shows great potential for cancer treatment, including that of drug-resistant cancers.


Assuntos
Dissulfetos , Neoplasias , Neoplasias/tratamento farmacológico , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA