Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncogene ; 38(25): 5021-5037, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30874597

RESUMO

Advanced and undifferentiated skin squamous cell carcinomas (SCCs) exhibit aggressive growth and enhanced metastasis capability, which is associated in mice with an expansion of the cancer stem-like cell (CSC) population and with changes in the regulatory mechanisms that control the proliferation and invasion of these cells. Indeed, autocrine activation of PDGFRα induces CSC invasion and promotes distant metastasis in advanced SCCs. However, the mechanisms involved in this process were unclear. Here, we show that CSCs of mouse advanced SCCs (L-CSCs) express CXCR4 and CXCR7, both receptors of SDF-1. PDGFRα signaling induces SDF-1 expression and secretion, and the autocrine activation of this pathway in L-CSCs. Autocrine SDF-1/CXCR4 signaling induces L-CSC proliferation and survival, and mediates PDGFRα-induced invasion, promoting in vivo lung metastasis. Validation of these findings in patient samples of skin SCCs shows a strong correlation between the expression of SDF1, PDGFRA, and PDGFRB, which is upregulated, along CXCR4 in tumor cells of advanced SCCs. Furthermore, PDGFR regulates SDF-1 expression and inhibition of SDF-1/CXCR4 and PDGFR pathways blocks distant metastasis of human PD/S-SCCs. Our results indicate that functional crosstalk between PDGFR/SDF-1 signaling regulates tumor cell invasion and metastasis in human and mouse advanced SCCs, and suggest that CXCR4 and/or PDGFR inhibitors could be used to block metastasis of these aggressive tumors.


Assuntos
Carcinoma de Células Escamosas/patologia , Quimiocina CXCL12/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Neoplasias Cutâneas/patologia , Animais , Comunicação Autócrina/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Transdução de Sinais/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
2.
Cancer Res ; 76(5): 1245-59, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26719534

RESUMO

Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. ß-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Células-Tronco Neoplásicas/fisiologia , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/patologia , Animais , Carcinoma de Células Escamosas/secundário , Linhagem da Célula , Proliferação de Células , Progressão da Doença , Receptores ErbB/fisiologia , Humanos , Camundongos , Estadiamento de Neoplasias , Fator de Crescimento Derivado de Plaquetas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA