Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Cell ; 59(3): 351-367.e6, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38237592

RESUMO

Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Linhagem Celular Tumoral , Fatores de Transcrição , Proteínas de Ligação a DNA , Coração/fisiologia , Proteínas de Peixe-Zebra/genética , Proliferação de Células/genética , Mamíferos
2.
Biol Open ; 12(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37367831

RESUMO

Due to its genetic amenability coupled with advances in genome editing, zebrafish is an excellent model to examine the function of (epi)genomic elements. Here, we repurposed the Ac/Ds maize transposition system to efficiently characterise zebrafish cis-regulated elements, also known as enhancers, in F0-microinjected embryos. We further used the system to stably express guide RNAs enabling CRISPR/dCas9-interference (CRISPRi) perturbation of enhancers without disrupting the underlying genetic sequence. In addition, we probed the phenomenon of antisense transcription at two neural crest gene loci. Our study highlights the utility of Ac/Ds transposition as a new tool for transient epigenome modulation in zebrafish.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Epigenoma , Edição de Genes
4.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35502777

RESUMO

The immune system is fundamental to tissue homeostasis and is the first line of defense following infection, injury or disease. In the damaged heart, large numbers of immune cells are recruited to the site of injury. These cells play an integral part in both repair by scar formation and the initiation of tissue regeneration. They initially assume inflammatory phenotypes, releasing pro-inflammatory cytokines and removing dead and dying tissue, before entering a reparative stage, replacing dead muscle tissue with a non-contractile scar. In this Review, we present an overview of the innate and adaptive immune response to heart injury. We explore the kinetics of immune cell mobilization following cardiac injury and how the different innate and adaptive immune cells interact with one another and with the damaged tissue. We draw on key findings from regenerative models, providing insight into how to support a robust immune response permissible for cardiac regeneration. Finally, we consider how the latest technological developments can offer opportunities for a deeper and unbiased functional understanding of the immune response to heart disease, highlighting the importance of such knowledge as the basis for promoting regeneration following cardiac injury in human patients.


Assuntos
Cardiopatias , Traumatismos Cardíacos , Imunidade Adaptativa , Cicatriz , Coração/fisiologia , Humanos , Sistema Imunitário/metabolismo
5.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35312773

RESUMO

During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contributes cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486669

RESUMO

Fibroblasts are activated to repair the heart following injury. Fibroblast activation in the mammalian heart leads to a permanent fibrotic scar that impairs cardiac function. In other organisms, such as zebrafish, cardiac injury is followed by transient fibrosis and scar-free regeneration. The mechanisms that drive scarring versus scar-free regeneration are not well understood. Here, we show that the homeobox-containing transcription factor Prrx1b is required for scar-free regeneration of the zebrafish heart as the loss of Prrx1b results in excessive fibrosis and impaired cardiomyocyte proliferation. Through lineage tracing and single-cell RNA sequencing, we find that Prrx1b is activated in epicardial-derived cells where it restricts TGFß ligand expression and collagen production. Furthermore, through combined in vitro experiments in human fetal epicardial-derived cells and in vivo rescue experiments in zebrafish, we conclude that Prrx1 stimulates Nrg1 expression and promotes cardiomyocyte proliferation. Collectively, these results indicate that Prrx1 is a key transcription factor that balances fibrosis and regeneration in the injured zebrafish heart. This article has an associated 'The people behind the papers' interview.


Assuntos
Proliferação de Células , Coração/fisiologia , Proteínas de Homeodomínio/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose , Proteínas de Homeodomínio/genética , Humanos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Neuregulina-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
7.
Nat Commun ; 11(1): 600, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001677

RESUMO

Canonical roles for macrophages in mediating the fibrotic response after a heart attack include extracellular matrix turnover and activation of cardiac fibroblasts to initiate collagen deposition. Here we reveal that macrophages directly contribute collagen to the forming post-injury scar. Unbiased transcriptomics shows an upregulation of collagens in both zebrafish and mouse macrophages following heart injury. Adoptive transfer of macrophages, from either collagen-tagged zebrafish or adult mouse GFPtpz-collagen donors, enhances scar formation via cell autonomous production of collagen. In zebrafish, the majority of tagged collagen localises proximal to the injury, within the overlying epicardial region, suggesting a possible distinction between macrophage-deposited collagen and that predominantly laid-down by myofibroblasts. Macrophage-specific targeting of col4a3bpa and cognate col4a1 in zebrafish significantly reduces scarring in cryoinjured hosts. Our findings contrast with the current model of scarring, whereby collagen deposition is exclusively attributed to myofibroblasts, and implicate macrophages as direct contributors to fibrosis during heart repair.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Coração/fisiopatologia , Macrófagos/patologia , Cicatrização , Peixe-Zebra/fisiologia , Transferência Adotiva , Animais , Embrião de Mamíferos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Baço/patologia , Transcrição Gênica , Transcriptoma/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
8.
Dev Cell ; 52(5): 574-590.e6, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32084358

RESUMO

The epicardium is essential during cardiac development, homeostasis, and repair, and yet fundamental insights into its underlying cell biology, notably epicardium formation, lineage heterogeneity, and functional cross-talk with other cell types in the heart, are currently lacking. In this study, we investigated epicardial heterogeneity and the functional diversity of discrete epicardial subpopulations in the developing zebrafish heart. Single-cell RNA sequencing uncovered three epicardial subpopulations with specific genetic programs and distinctive spatial distribution. Perturbation of unique gene signatures uncovered specific functions associated with each subpopulation and established epicardial roles in cell adhesion, migration, and chemotaxis as a mechanism for recruitment of leukocytes into the heart. Understanding which mechanisms epicardial cells employ to establish a functional epicardium and how they communicate with other cardiovascular cell types during development will bring us closer to repairing cellular relationships that are disrupted during cardiovascular disease.


Assuntos
Linhagem da Célula , Pericárdio/citologia , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Pericárdio/embriologia , Pericárdio/metabolismo , RNA-Seq , Análise de Célula Única , Peixe-Zebra
9.
Development ; 145(7)2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29592950

RESUMO

The epicardium plays a key role during cardiac development, homeostasis and repair, and has thus emerged as a potential target in the treatment of cardiovascular disease. However, therapeutically manipulating the epicardium and epicardium-derived cells (EPDCs) requires insights into their developmental origin and the mechanisms driving their activation, recruitment and contribution to both the embryonic and adult injured heart. In recent years, studies of various model systems have provided us with a deeper understanding of the microenvironment in which EPDCs reside and emerge into, of the crosstalk between the multitude of cardiovascular cell types that influence the epicardium, and of the genetic programmes that orchestrate epicardial cell behaviour. Here, we review these discoveries and discuss how technological advances could further enhance our knowledge of epicardium-based repair mechanisms and ultimately influence potential therapeutic outcomes in cardiovascular regenerative medicine.


Assuntos
Coração/embriologia , Organogênese/fisiologia , Pericárdio/citologia , Regeneração/fisiologia , Animais , Diferenciação Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Humanos , Pericárdio/metabolismo
10.
Circ Res ; 108(1): 129-52, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21212394

RESUMO

Cardiac muscle creation during embryogenesis requires extracellular instructive signals that are regulated precisely in time and space, intersecting with intracellular genetic programs that confer or fashion the ability of the cells to respond. Unmasking the essential signals for cardiac lineage decisions has paramount importance for cardiac development and regenerative medicine, including the directed differentiation of progenitor and stem cells to a cardiac muscle fate.


Assuntos
Diferenciação Celular/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Humanos , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA