Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Inorg Biochem ; 260: 112688, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39111220

RESUMO

New-to-Nature biocatalysis has emerged as a promising tool in organic synthesis thanks to progress in protein engineering. Notably, hemeproteins have been evolved into robust catalysts for carbene and nitrene transfers and related sigmatropic rearrangements. In this work, we report the first example of a [2,3]-sigmatropic Sommelet-Hauser rearrangement initiated by a carbene transfer of the sperm whale myoglobin mutant L29S,H64V,V68F that was previously reported to catalyze the mechanistically similar [2,3]-sigmatropic Doyle-Kirmse rearrangement. This repurposed heme enzyme catalyzes the Sommelet-Hauser rearrangement between ethyl diazoacetate and benzyl thioethers bearing strong electron-withdrawing substituents with good yields and enantiomeric excess. Optimized catalytic conditions in the absence of any reductant led to an increased asymmetric induction with up to 59% enantiomeric excess. This myoglobin mutant is therefore one of the few catalysts for the asymmetric Sommelet-Hauser rearrangement. This work broadens the scope of abiological reactions catalyzed by iron-carbene transferases with a new example of asymmetric sigmatropic rearrangement.

2.
Chem Sci ; 15(27): 10308-10349, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38994420

RESUMO

This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).

3.
JACS Au ; 4(5): 1966-1974, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818064

RESUMO

Using light to unveil unexplored reactivities of earth-abundant metal-oxygen intermediates is a formidable challenge, given the already remarkable oxidation ability of these species in the ground state. However, the light-induced reactivity of Cu-O2 intermediates still remains unexplored, due to the photoejection of O2 under irradiation. Herein, we describe a photoinduced reactivity switch of bioinspired O2-activating CuI complexes, based on the archetypal tris(2-pyridyl-methyl)amine (TPA) ligand. This report represents a key precedent for light-induced reactivity switch in Cu-O2 chemistry, obtained by positioning C-H substrates in close proximity of the active site. Open and caged CuI complexes displaying an internal aryl ether substrate were evaluated. Under light, a Cu-O2 mediated reaction takes place that induces a selective conversion of the internal aryl ether unit to a phenolate-CH2- moiety with excellent yields. This light-induced transformation displays high selectivity and allows easy postfunctionalization of TPA-based ligands for straightforward preparation of challenging heteroleptic structures. In the absence of light, O2 activation results in the standard oxidative cleavage of the covalently attached substrate. A reaction mechanism that supports a monomeric cupric-superoxide-dependent reactivity promoted by light is proposed on the basis of reactivity studies combined with (TD-) DFT calculations.

4.
Inorg Chem ; 63(24): 11063-11078, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38814816

RESUMO

In this paper, we employed a multidisciplinary approach, combining experimental techniques and density functional theory (DFT) calculations to elucidate key features of the copper coordination environment of the bacterial lytic polysaccharide monooxygenase (LPMO) from Serratia marcescens (SmAA10). The structure of the holo-enzyme was successfully obtained by X-ray crystallography. We then determined the copper(II) binding affinity using competing ligands and observed that the affinity of the histidine brace ligands for copper is significantly higher than previously described. UV-vis, advanced electron paramagnetic resonance (EPR), and X-ray absorption spectroscopy (XAS) techniques, including high-energy resolution fluorescence detected (HERFD) XAS, were further used to gain insight into the copper environment in both the Cu(II) and Cu(I) redox states. The experimental data were successfully rationalized by DFT models, offering valuable information on the electronic structure and coordination geometry of the copper center. Finally, the Cu(II)/Cu(I) redox potential was determined using two different methods at ca. 350 mV vs NHE and rationalized by DFT calculations. This integrated approach not only advances our knowledge of the active site properties of SmAA10 but also establishes a robust framework for future studies of similar enzymatic systems.


Assuntos
Domínio Catalítico , Cobre , Teoria da Densidade Funcional , Oxigenases de Função Mista , Serratia marcescens , Cobre/química , Cobre/metabolismo , Serratia marcescens/enzimologia , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/química , Cristalografia por Raios X , Modelos Moleculares , Polissacarídeos/química , Polissacarídeos/metabolismo , Oxirredução
5.
Chempluschem ; 88(5): e202300156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37145031

RESUMO

This study investigates the site-directed immobilization of a hybrid catalyst bearing a biquinoline-based-Pd(II) complex (1) and a robust laccase within cavities of a silica foam to favor veratryl alcohol oxidation. We performed the grafting of 1 at a unique surface located lysine of two laccase variants, either at closed (1⊂UNIK157 ) or opposite position (1⊂UNIK71 ) of the enzyme oxidation site. After immobilization into the cavities of silica monoliths bearing hierarchical porosity, we show that catalytic activity is dependent on the orientation and loading of each hybrid, 1⊂UNIK157 being twice as active than 1⊂UNIK71 (203 TON vs 100 TON) when operating under continuous flow. These systems can be reused 5 times, with an operational activity remaining as high as 40 %. We show that the synergy between 1 and laccase can be tuned within the foam. This work is a proof of concept for controlling the organization of a heterogeneous hybrid catalyst using a Pd/laccase/silica foam.

6.
Chem Commun (Camb) ; 59(29): 4288-4299, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946593

RESUMO

Reproducing the key features offered by metalloprotein binding cavities is an attractive approach to overcome the main bottlenecks of current open artificial models (in terms of stability, efficiency and selectivity). In this context, this featured article brings together selected examples of recent developments in the field of confined bioinspired complexes with an emphasis on the emerging hemicryptophane caged ligands. In particular, we focused on (1) the strategies allowing the insulation and protection of complexes sharing similarities with metalloprotein active sites, (2) the confinement-induced improvement of catalytic efficiencies and selectivities and (3) very recent efforts that have been made toward the development of bioinspired complexes equipped with weakly binding artificial cavities.

7.
Front Pharmacol ; 13: 1060827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467097

RESUMO

Metal-based chemotherapeutics like cisplatin are widely employed in cancer treatment. In the last years, the design of redox-active (transition) metal complexes, such as of copper (Cu), has attracted high interest as alternatives to overcome platinum-induced side-effects. However, several challenges are still faced, including optimal aqueous solubility and efficient intracellular delivery, and strategies like the use of cell-penetrating peptides have been encouraging. In this context, we previously designed a Cu(II) scaffold that exhibited significant reactive oxygen species (ROS)-mediated cytotoxicity. Herein, we build upon the promising Cu(II) redox-active metallic core and aim to potentiate its anticancer activity by rationally tailoring it with solubility- and uptake-enhancing functionalizations that do not alter the ROS-generating Cu(II) center. To this end, sulfonate, arginine and arginine-rich cell-penetrating peptide (CPP) derivatives have been prepared and characterized, and all the resulting complexes preserved the parent Cu(II) coordination core, thereby maintaining its reported redox capabilities. Comparative in vitro assays in several cancer cell lines reveal that while specific solubility-targeting derivatizations (i.e., sulfonate or arginine) did not translate into an improved cytotoxicity, increased intracellular copper delivery via CPP-conjugation promoted an enhanced anticancer activity, already detectable at short treatment times. Additionally, immunofluorescence assays show that the Cu(II) peptide-conjugate distributed throughout the cytosol without lysosomal colocalization, suggesting potential avoidance of endosomal entrapment. Overall, the systematic exploration of the tailored modifications enables us to provide further understanding on structure-activity relationships of redox-active metal-based (Cu(II)) cytotoxic complexes, which contributes to rationalize and improve the design of more efficient redox-mediated metal-based anticancer therapy.

8.
Sci Adv ; 8(51): eade9982, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542709

RESUMO

Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity. Using Colletotrichum orbiculare, we show that the enzyme pair is cosecreted by the fungus early during plant penetration and that single and double mutants have impaired penetration ability. Molecular modeling, biochemical, and biophysical approaches revealed a fine-tuned interplay between these metalloenzymes, which oxidize plant cuticular long-chain alcohols into aldehydes. We show that the enzyme pair is involved in transcriptional regulation of genes necessary for host penetration. The identification of these infection-specific metalloenzymes opens new avenues on the role of wax-derived compounds and the design of oxidase-specific inhibitors for crop protection.


Assuntos
Proteínas Fúngicas , Metaloproteínas , Proteínas Fúngicas/genética , Células Vegetais , Fungos , Virulência
9.
Chemistry ; 28(66): e202202206, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36044615

RESUMO

The stereoselective copper-mediated hydroxylation of intramolecular C-H bonds from tridentate ligands is reinvestigated using DFT calculations. The computational study aims at deciphering the mechanism of C-H hydroxylation obtained after reaction of Cu(I) precursors with dioxygen, using ligands bearing either activated (L1 ) or non-activated (L2 ) C-H bonds. Configurational analysis allows rationalization of the experimentally observed regio- and stereoselectivity. The computed mechanism involves the formation of a side-on peroxide species (P) in equilibrium with the key intermediate bis-(µ-oxo) isomer (O) responsible for the C-H activation step. The P/O equilibrium yields the same activation barrier for the two complexes. However, the main difference between the two model complexes is observed during the C-H activation step, where the complex bearing the non-activated C-H bonds yields a higher energy barrier, accounting for the experimental lack of reactivity of this complex under those conditions.


Assuntos
Cobre , Oxigênio , Cobre/química , Ligantes , Oxigênio/química , Peróxidos/química
10.
Dalton Trans ; 51(28): 10702-10706, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35593727

RESUMO

A capped bioinspired ligand built from a tris(2-pyridyl-methyl)amine (TPA) unit and surmounted by a triazole-based intramolecular H-bonding secondary sphere was prepared. The resulting cage provides a well-defined cavity combining the hydrophobic nature with H-bonding properties. Its coordinating properties were explored using Zn(II) and Cu(II) metal ions.


Assuntos
Aminas , Triazóis , Aminas/química , Hidrogênio , Ligação de Hidrogênio , Ligantes , Piridinas
11.
Inorg Chem ; 61(20): 8022-8035, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35549254

RESUMO

Understanding the structure and function of lytic polysaccharide monooxygenases (LPMOs), copper enzymes that degrade recalcitrant polysaccharides, requires the reliable atomistic interpretation of electron paramagnetic resonance (EPR) data on the Cu(II) active site. Among various LPMO families, the chitin-active PlAA10 shows an intriguing phenomenology with distinct EPR signals, a major rhombic and a minor axial signal. Here, we combine experimental and computational investigations to uncover the structural identity of these signals. X-band EPR spectra recorded at different pH values demonstrate pH-dependent population inversion: the major rhombic signal at pH 6.5 becomes minor at pH 8.5, where the axial signal dominates. This suggests that a protonation change is involved in the interconversion. Precise structural interpretations are pursued with quantum chemical calculations. Given that accurate calculations of Cu g-tensors remain challenging for quantum chemistry, we first address this problem via a thorough calibration study. This enables us to define a density functional that achieves accurate and reliable prediction of g-tensors, giving confidence in our evaluation of PlAA10 LPMO models. Large models were considered that include all parts of the protein matrix surrounding the Cu site, along with the characteristic second-sphere features of PlAA10. The results uniquely identify the rhombic signal with a five-coordinate Cu ion bearing two water molecules in addition to three N-donor ligands. The axial signal is attributed to a four-coordinate Cu ion where only one of the waters remains bound, as hydroxy. Alternatives that involve decoordination of the histidine brace amino group are unlikely based on energetics and spectroscopy. These results provide a reliable spectroscopy-consistent view on the plasticity of the resting state in PlAA10 LPMO as a foundation for further elucidating structure-property relationships and the formation of catalytically competent species. Our strategy is generally applicable to the study of EPR parameters of mononuclear copper-containing metalloenzymes.


Assuntos
Oxigenases de Função Mista , Photorhabdus , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxigenases de Função Mista/química , Photorhabdus/enzimologia , Polissacarídeos/química
12.
Analyst ; 147(11): 2515-2522, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35543191

RESUMO

1D 1H NMR spectroscopy has been widely used to monitor enzymatic activity by recording the evolution of the spectra of substrates and/or products, thanks to the linear response of NMR. For complex systems involving the coexistence of multiple compounds (substrate, final product and various intermediates), the identification and quantification can be a more arduous task. Here, we present a simple analytical method for the rapid characterization of reaction mixtures involving enzymatic complexes using Maximum Quantum (MaxQ) NMR, accelerated with the Non-Uniform Sampling (NUS) acquisition procedure. Specifically, this approach enables, in the first analytical step, the counting of the molecules present in the samples. We also show, using two different enzymatic systems, that the implementation of these pulse sequences implies precautions related to the short relaxation times due to the presence of metallo-enzymes or paramagnetic catalysts. Finally, the combination of MaxQ and diffusion experiments, which leads to a 3D chart, greatly improves the resolution and offers an extreme simplification of the spectra while giving valuable indications on the affinity of the enzymes to the different compounds present in the reaction mixture.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos
13.
iScience ; 24(4): 102378, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33948559

RESUMO

Photobiocatalysis uses light to perform specific chemical transformations in a selective and efficient way. The intention is to couple a photoredox cycle with an enzyme performing multielectronic catalytic activities. Laccase, a robust multicopper oxidase, can be envisioned to use dioxygen as a clean electron sink when coupled to an oxidation photocatalyst. Here, we provide a detailed study of the coupling of a [Ru(bpy)3]2+ photosensitizer to laccase. We demonstrate that efficient laccase reduction requires an electron relay like methyl viologen. In the presence of dioxygen, electrons transiently stored in superoxide ions are scavenged by laccase to form water instead of H2O2. The net result is the photo accumulation of highly oxidizing [Ru(bpy)3]3+. This study provides ground for the use of laccase in tandem with a light-driven oxidative process and O2 as one-electron transfer relay and as four-electron substrate to be a sustainable final electron acceptor in a photocatalytic process.

14.
Inorg Chem ; 60(5): 2939-2952, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33596377

RESUMO

Three novel dinuclear Cu(II) complexes based on a N,N,O-chelating salphen-like ligand scaffold and bearing varying aromatic substituents (-H, -Cl, and -Br) have been synthesized and characterized. The experimental and computational data obtained suggest that all three complexes exist in the dimeric form in the solid state and adopt the same conformation. The mass spectrometry and electron paramagnetic resonance results indicate that the dimeric structure coexists with the monomeric form in solution upon solvent (dimethyl sulfoxide and water) coordination. The three synthesized Cu(II) complexes exhibit high potentiality as ROS generators, with the Cu(II)/Cu(I) redox potential inside the biological redox window, and thus being able to biologically undergo Cu(II)/Cu(I) redox cycling. The formation of ROS is one of the most promising reported cell death mechanisms for metal complexes to offer an inherent selectivity to cancer cells. In vitro cytotoxic studies in two different cancer cell lines (HeLa and MCF7) and in a normal fibroblast cell line show promising selective cytotoxicity for cancer cells (IC50 about 25 µM in HeLa cells, which is in the range of cisplatin and improved with respect to carboplatin), hence placing this N,N,O-chelating salphen-like metallic core as a promising scaffold to be explored in the design of future tailor-made Cu(II) cytotoxic compounds.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Bases de Schiff/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quelantes/síntese química , Quelantes/farmacologia , Quelantes/toxicidade , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , Cobre/química , DNA/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Teoria da Densidade Funcional , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Camundongos , Modelos Químicos , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/síntese química , Bases de Schiff/toxicidade
15.
Chembiochem ; 22(3): 443-459, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32852088

RESUMO

The Diels-Alder (DA) reaction is a cycloaddition of a conjugated diene and an alkene (dienophile) leading to the formation of a cyclohexene derivative through a concerted mechanism. As DA reactions generally proceed with a high degree of regio- and stereoselectivity, they are widely used in synthetic organic chemistry. Considering eco-conscious public and governmental movements, efforts are now directed towards the development of synthetic processes that meet environmental concerns. Artificial enzymes, which can be developed to catalyze abiotic reactions, appear to be important synthetic tools in the synthetic biology field. This review describes the different strategies used to develop protein-based artificial enzymes for DA reactions, including for in cellulo approaches.


Assuntos
Cicloexenos/síntese química , Albumina Sérica/química , Animais , Reação de Cicloadição , Cicloexenos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Suínos
16.
FEBS J ; 287(15): 3298-3314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31903721

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes involved in the degradation of recalcitrant polysaccharides such as cellulose or chitin. LPMOs act in synergy with glycoside hydrolases such as cellulases and chitinases by oxidatively cleaving a number of glycosidic bonds at the surface of their crystalline substrate(s). Besides their role in biomass degradation, some bacterial LPMOs have been found to be virulence factors in some human and insect pathogens. Photorhabdus luminescens is a nematode symbiont bacterium that is pathogenic to a wide range of insects. A single gene encoding a LPMO is found in its genome. In this work, we report the characterization of this LPMO, referred to as PlAA10. Surprisingly, PlAA10 lacks the conserved alanine residue (substituted by an isoleucine) found in the second coordination sphere of the copper-active site in bacterial LPMOs. PlAA10 was found to be catalytically active on both α- and ß-chitin, and exhibits a C1-oxidation regiospecificity, similarly to other chitin-active LPMOs. The 1.6 Å X-ray crystal structure confirmed that PlAA10 adopts the canonical immunoglobulin-like fold typical for LPMOs. The geometry of the copper-active site is not affected by the nearby isoleucine, as also supported by electron paramagnetic resonance. Nevertheless, the bulkier side chain of isoleucine protrudes from the substrate-binding surface. A bioinformatic study on putative bacterial LPMOs unveiled that they exhibit some variability at the conserved active-site alanine position with a substitution in about 15% of all sequences analyzed. DATABASE: Structural data (atomic coordinates and structure factors) reported for PlAA10 are available in the Protein Data Bank under accession number 6T5Z. ENZYMES: PlAA10, EC1.14.99.53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Photorhabdus/enzimologia , Polissacarídeos/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutação , Oxirredução , Polissacarídeos/química , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 58(41): 14605-14609, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31487113

RESUMO

In the context of developing ecofriendly chemistry, artificial enzymes are now considered as promising tools for synthesis. They are prepared in particular with the aim to catalyze reactions that are rarely, if ever, catalyzed by natural enzymes. We discovered that 1-aminocyclopropane carboxylic acid oxidase reconstituted with CuII served as an efficient artificial Diels-Alderase. The kinetic parameters of the catalysis of the cycloaddition of cyclopentadiene and 2-azachalcone were determined (KM =230 µm, kapp =3 h-1 ), which gave access to reaction conditions that provided quantitative yield and >99 % ee of the (1S,2R,3R,4R) product isomer. This unprecedented performance was rationalized by molecular modeling as only one docking pose of 2-azachalcone was possible in the active site of the enzyme and this was the one that leads to the (1S,2R,3R,4R) product isomer.


Assuntos
Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/metabolismo , Cobre/química , Domínio Catalítico , Química Verde , Modelos Moleculares , Conformação Proteica
18.
Chemistry ; 25(60): 13766-13776, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31424584

RESUMO

1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.

19.
J Inorg Biochem ; 195: 51-60, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30925401

RESUMO

Reactive oxygen species (ROS) formation appears as one of the most promising pathways to induce cell death. The interesting Cu(II)/Cu(I) redox pair has been reported to biologically generate ROS and induce cell damage. Simple metal complexes, such as cisplatin, sometimes offer even better properties than others highly accurately synthesized, which imply considerable time and economical efforts. This work relies on the synthesis and characterisation of four existing Cu(II) complexes bearing N-donor ligands, previously used for a totally different intend, but tested now for anticancer purposes. Furthermore, a relationship between their coordinating features, i.e. their redox behaviour, with their biological activity have been inferred to further understand the medicinal role of the Cu(II)/Cu(I) redox pair. Cytotoxicity studies and interactions towards DNA have been assessed, studying both covalent and non-covalent modes of binding via mass spectrometry (MS), UV-Vis and fluorescence, evaluating the cleaving properties of the assayed compounds, as well as their capacity to generate ROS inside the cells. The role of the ligand for one of the complexes has been evaluated by a computational approach. The idea of using "old" complexes for "novel" anticancer purposes can offer promising results in the future, being a simple but interesting approach to study, as we demonstrate here for most of the complexes analysed, showing a non-expected "new" and beneficial role.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/toxicidade , DNA/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Reposicionamento de Medicamentos , Fibroblastos/efeitos dos fármacos , Humanos , Ligantes , Estrutura Molecular , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
20.
Dalton Trans ; 48(5): 1859-1870, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30648708

RESUMO

N-Methylation of the peptide amide bond has proven to be a powerful strategy to fine-tune the conformation and properties of peptides. In this context and for the first time, we show that N-methylation can also be used to control the copper(ii) coordination properties of peptides and stabilize at high pH values the copper(ii) species lacking amidate coordination. Namely, we have prepared a derivative of the O-Asp peptide where the copper(ii) coordinating amino acids, i.e. Asp and His residues, were N-methylated (ONMe-Asp). A combined study using potentiometric and spectroscopic (UV-Vis, CD, EPR and NMR) techniques indicates the formation of the wanted major species, [CuH(ONMe-Asp)]2+, where copper(ii) is bound to His4(Nε), His7(Nε), His9(Nε) and Asp2(COO-). With respect to the parent non-methylated O-Asp peptide, [CuH(ONMe-Asp)]2+ is stable at higher pH values but has lower affinity for copper(ii). Additionally, electrochemical studies reveal a Cu(ii) ⇌ Cu(i) redox process with a larger cathodic and anodic peak separation. Species containing copper(ii) coordinating amidates were not observed for this ONMe-Asp peptide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA