Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cytogenet Genome Res ; 164(1): 1-15, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452741

RESUMO

BACKGROUND: The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY: Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES: In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.


Assuntos
Peixes , Meiose , Complexo Sinaptonêmico , Complexo Sinaptonêmico/genética , Animais , Meiose/genética , Peixes/genética , Evolução Molecular , Cromossomos/genética , Masculino , Cromossomos Sexuais/genética
2.
Comp Cytogenet ; 17: 251-262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953853

RESUMO

The African family Distichodontidae comprises 109 species in 16 genera. Up-to-date cytogenetic information was available for the only distichodontid species Distichodusaffinis Günther, 1873. Here we report chromosome number and morphology in: Distichodusengycephalus Günther, 1864 (2n = 52, FN = 104), Ichthyborusbesse (Joannis, 1835) (2n = 46, FN = 92), Nannocharaxniloticus (Joannis, 1835) (2n = 54, FN = 106) and three taxa, Nannaethiopsbleheri Géry et Zarske, 2003, Nannaethiops sp., and Neolebiasunifasciatus Steindachner, 1894, that exhibit the same karyotypes (2n = 50, FN = 98). To confirm the Nannaethiops Günther, 1872 and Neolebias Steindachner, 1894 species identification, mt-DNA sequences of the two markers (COI and 16S rRNA) were obtained from karyotyped specimens and compared with the relevant sequences accessible from GenBank. The great prevalence of biarmed chromosomes (the karyotypes of most species contain exclusively biarmed chromosomes) is a distinctive characteristic of Distichodontidae and Cithariniformes as a whole.

3.
Chromosome Res ; 31(4): 33, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37985497

RESUMO

Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.


Assuntos
Fundulidae , Peixes Listrados , Animais , DNA Satélite , Peixes Listrados/genética , Fundulidae/genética , Centrômero/genética , Evolução Molecular
4.
J Fish Biol ; 103(6): 1501-1514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661806

RESUMO

Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.


Assuntos
Ciprinodontiformes , DNA Satélite , Animais , DNA Satélite/genética , Hibridização in Situ Fluorescente , Cariótipo , Fundulus heteroclitus
5.
Comp Cytogenet ; 17(1): 13-29, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305809

RESUMO

The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.

6.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108228

RESUMO

Meiotic crossovers/chiasmata are not randomly distributed and strictly controlled. The mechanisms behind crossover (CO) patterning remain largely unknown. In Allium cepa, as in the vast majority of plants and animals, COs predominantly occur in the distal 2/3 of the chromosome arm, while in Allium fistulosum they are strictly localized in the proximal region. We investigated the factors that may contribute to the pattern of COs in A. cepa, A. fistulosum and their F1 diploid (2n = 2x = 8C + 8F) and F1 triploid (2n = 3x = 16F + 8C) hybrids. The genome structure of F1 hybrids was confirmed using genomic in situ hybridization (GISH). The analysis of bivalents in the pollen mother cells (PMCs) of the F1 triploid hybrid showed a significant shift in the localization of COs to the distal and interstitial regions. In F1 diploid hybrid, the COs localization was predominantly the same as that of the A. cepa parent. We found no differences in the assembly and disassembly of ASY1 and ZYP1 in PMCs between A. cepa and A. fistulosum, while F1 diploid hybrid showed a delay in chromosome pairing and a partial absence of synapsis in paired chromosomes. Immunolabeling of MLH1 (class I COs) and MUS81 (class II COs) proteins showed a significant difference in the class I/II CO ratio between A. fistulosum (50%:50%) and A. cepa (73%:27%). The MLH1:MUS81 ratio at the homeologous synapsis of F1 diploid hybrid (70%:30%) was the most similar to that of the A. cepa parent. F1 triploid hybrid at the A. fistulosum homologous synapsis showed a significant increase in MLH1:MUS81 ratio (60%:40%) compared to the A. fistulosum parent. The results suggest possible genetic control of CO localization. Other factors affecting the distribution of COs are discussed.


Assuntos
Allium , Allium/genética , Triploidia , Cebolas/genética , Hibridização In Situ , Cromossomos
7.
Animals (Basel) ; 12(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552484

RESUMO

Vipera berus is the species with the largest range of snakes on Earth and one of the largest among reptiles in general. It is also the only snake species found in the Arctic Circle. Vipera berus is the most involved species of the genus Vipera in the process of interspecific hybridization in nature. The taxonomy of the genus Vipera is based on molecular markers and morphology and requires clarification using SC-karyotyping. This work is a detailed comparative study of the somatic and meiotic karyotypes of V. berus, with special attention to DNA and protein markers associated with synaptonemal complexes. The karyotype of V. berus is a remarkable example of a bimodal karyotype containing both 16 large macrochromosomes and 20 microchromosomes. We traced the stages of the asynchronous assembly of both types of bivalents. The number of crossing-over sites per pachytene nucleus, the localization of the nucleolar organizer, and the unique heterochromatin block on the autosomal bivalent 6-an important marker-were determined. Our results show that the average number of crossing-over sites per pachytene nucleus is 49.5, and the number of MLH1 sites per bivalent 1 reached 11, which is comparable to several species of agamas.

8.
Chromosome Res ; 30(4): 309-333, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36208359

RESUMO

Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.


Assuntos
Fundulidae , Peixes Listrados , Animais , Humanos , Peixes Listrados/genética , Fundulidae/genética , Hibridização in Situ Fluorescente , Hibridização Genômica Comparativa , Cromossomos Sexuais/genética , Cromossomo Y/genética , População Africana , Evolução Molecular
9.
Comp Cytogenet ; 16(2): 143-150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761810

RESUMO

The Afrotropical lutefish family Citharinidae (Citharinoidei, Characiformes) comprises three genera with eight species in total. Although Citharinidae have been studied in terms of taxonomy and systematics, no cytogenetic information was available for any representative of the family. Furthermore, only one species out of 116 in Citharinoidei (Distichodusaffinis Günther, 1873) has been studied cytogenetically. Here, we report the karyotypes of Citharinuscitharus (Geoffroy St. Hilaire, 1809) from West Africa and Citharinuslatus Müller et Troschel, 1844 from Northeast Africa. The former has the diploid chromosome number 2n = 40 and the fundamental number FN = 80, while the latter has 2n = 44 and FN = 88. Hence, these karyotypes consist exclusively of bi-armed chromosomes. Such karyotypes were previously found in D.affinis and in many lineages of Neotropical species of another suborder of Characiformes, Characoidei. In contrast, the karyotypes dominated by uni-armed elements are typical for a number of phylogenetically basal lineages of Afrotropical and Neotropical Characoidei. We discuss the importance of our data on Citharinidae for the understanding of the karyotype evolution within the order Characiformes.

10.
Comp Cytogenet ; 15(4): 345-354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721818

RESUMO

The African weakly electric elephantfish family Mormyridae comprises 22 genera and almost 230 species. Up-to-date cytogenetic information was available for 17 species representing 14 genera. Here we report chromosome number and morphology in Hyperopisusbebe (Lacepède, 1803) and Pollimyrusisidori (Valenciennes, 1847) collected from the White Nile system in southwestern Ethiopia. Both taxa displayed the diploid chromosome number 2n = 40, but they differed in fundamental numbers: FN = 66 in H.bebe and FN = 72 in P.isidori; previously the same diploid chromosome number 2n = 40 was reported in an undescribed species of Pollimyrus Taverne, 1971 (FN = 42) from the same region. Our results demonstrate that not only pericentric inversions, but fusions also played a substantial role in the evolution of the mormyrid karyotype structure. If the hypothesis that the karyotype structure with 2n = 50-52 and prevalence of the uni-armed chromosomes close to the ancestral condition for the family Mormyridae is correct, the most derived karyotype structures are found in the Mormyrus Linnaeus, 1758 species with 2n = 50 and the highest number of bi-armed elements in their compliments compared to all other mormyrids and in Pollimyrusisidori with the highest number of bi-armed elements among the mormyrids with 2n = 40.

11.
Curr Biol ; 31(21): 4800-4809.e9, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496222

RESUMO

Sex chromosomes are generally derived from a pair of classical type-A chromosomes, and relatively few alternative models have been proposed up to now.1,2 B chromosomes (Bs) are supernumerary and dispensable chromosomes with non-Mendelian inheritance found in many plant and animal species3,4 that have often been considered as selfish genetic elements that behave as genome parasites.5,6 The observation that in some species Bs can be either restricted or predominant in one sex7-14 raised the interesting hypothesis that Bs could play a role in sex determination.15 The characterization of putative B master sex-determining (MSD) genes, however, has not yet been provided to support this hypothesis. Here, in Astyanax mexicanus cavefish originating from Pachón cave, we show that Bs are strongly male predominant. Based on a high-quality genome assembly of a B-carrying male, we characterized the Pachón cavefish B sequence and found that it contains two duplicated loci of the putative MSD gene growth differentiation factor 6b (gdf6b). Supporting its role as an MSD gene, we found that the Pachón cavefish gdf6b gene is expressed specifically in differentiating male gonads, and that its knockout induces male-to-female sex reversal in B-carrying males. This demonstrates that gdf6b is necessary for triggering male sex determination in Pachón cavefish. Altogether these results bring multiple and independent lines of evidence supporting the conclusion that the Pachón cavefish B is a "B-sex" chromosome that contains duplicated copies of the gdf6b gene, which can promote male sex determination in this species.


Assuntos
Characidae , Animais , Evolução Biológica , Cavernas , Characidae/genética , Feminino , Masculino , Cromossomos Sexuais/genética
12.
BMC Med Genomics ; 13(Suppl 8): 125, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948182

RESUMO

BACKGROUND: Carotid and vagal paragangliomas (CPGLs and VPGLs) are rare neoplasms that arise from the paraganglia located at the bifurcation of carotid arteries and vagal trunk, respectively. Both tumors can occur jointly as multiple paragangliomas accounting for approximately 10 to 20% of all head and neck paragangliomas. However, molecular and genetic mechanisms underlying the pathogenesis of multiple paragangliomas remain elusive. CASE PRESENTATION: We report a case of multiple paragangliomas in a patient, manifesting as bilateral CPGL and unilateral VPGL. Tumors were revealed via computed tomography and ultrasound study and were resected in two subsequent surgeries. Both CPGLs and VPGL were subjected to immunostaining for succinate dehydrogenase (SDH) subunits and exome analysis. A likely pathogenic germline variant in the SDHD gene was indicated, while likely pathogenic somatic variants differed among the tumors. CONCLUSIONS: The identified germline variant in the SDHD gene seems to be a driver in the development of multiple paragangliomas. However, different spectra of somatic variants identified in each tumor indicate individual molecular mechanisms underlying their pathogenesis.


Assuntos
Doenças das Artérias Carótidas/genética , Neoplasias dos Nervos Cranianos/genética , Neoplasias Primárias Múltiplas/genética , Paraganglioma/genética , Doenças do Nervo Vago/genética , Neoplasias Vasculares/genética , Doenças das Artérias Carótidas/diagnóstico , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/patologia , Neoplasias dos Nervos Cranianos/diagnóstico , Neoplasias dos Nervos Cranianos/diagnóstico por imagem , Neoplasias dos Nervos Cranianos/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/diagnóstico , Neoplasias Primárias Múltiplas/diagnóstico por imagem , Neoplasias Primárias Múltiplas/patologia , Paraganglioma/diagnóstico , Paraganglioma/diagnóstico por imagem , Paraganglioma/patologia , Succinato Desidrogenase/genética , Doenças do Nervo Vago/diagnóstico , Doenças do Nervo Vago/diagnóstico por imagem , Doenças do Nervo Vago/patologia , Neoplasias Vasculares/diagnóstico , Neoplasias Vasculares/diagnóstico por imagem , Neoplasias Vasculares/patologia
13.
BMC Med Genomics ; 13(Suppl 8): 115, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948195

RESUMO

BACKGROUND: Vagal paragangliomas (VPGLs) belong to a group of rare head and neck neuroendocrine tumors. VPGLs arise from the vagus nerve and are less common than carotid paragangliomas. Both diagnostics and therapy of the tumors raise significant challenges. Besides, the genetic and molecular mechanisms behind VPGL pathogenesis are poorly understood. METHODS: The collection of VPGLs obtained from 8 patients of Russian population was used in the study. Exome library preparation and high-throughput sequencing of VPGLs were performed using an Illumina technology. RESULTS: Based on exome analysis, we identified pathogenic/likely pathogenic variants of the SDHx genes, frequently mutated in paragangliomas/pheochromocytomas. SDHB variants were found in three patients, whereas SDHD was mutated in two cases. Moreover, likely pathogenic missense variants were also detected in SDHAF3 and SDHAF4 genes encoding for assembly factors for the succinate dehydrogenase (SDH) complex. In a patient, we found a novel variant of the IDH2 gene that was predicted as pathogenic by a series of algorithms used (such as SIFT, PolyPhen2, FATHMM, MutationTaster, and LRT). Additionally, pathogenic/likely pathogenic variants were determined for several genes, including novel genes and some genes previously reported as associated with different types of tumors. CONCLUSIONS: Results indicate a high heterogeneity among VPGLs, however, it seems that driver events in most cases are associated with mutations in the SDHx genes and SDH assembly factor-coding genes that lead to disruptions in the SDH complex.


Assuntos
Neoplasias dos Nervos Cranianos/genética , Mutação , Paraganglioma/genética , Doenças do Nervo Vago/genética , Adulto , Idoso , Análise Mutacional de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Succinato Desidrogenase/genética
14.
Comp Cytogenet ; 14(3): 387-397, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32904050

RESUMO

The elephantfish family Mormyridae is the most diverse lineage of the primitive teleostean clade Osteoglossomorpha distributed in inland waters of all continents except Antarctica and Europe. The family Mormyridae is endemic to Africa and includes 22 genera and almost 230 species. The evolutionary radiation of mormyrids most probably should be attributed to their capability of both generating and receiving weak electric signals. Up-to-date cytogenetic studies have revealed substantial karyotype differentiation among the nine investigated elephantfish species and genera (a single species studied per each genus). In the present study, karyotypes of five species representing five mormyrid genera (four unexplored ones) collected from the White Nile system in southwestern Ethiopia are described for the first time. The results show substantial variety of the diploid chromosome and fundamental numbers: 2n = 48 and FN = 54 in Brevimyrus niger (Günther, 1866), 2n = 50 and FN = 72 in Cyphomyrus petherici (Boulenger, 1898), 2n = 50 and FN = 78 in Hippopotamyrus pictus (Marcusen, 1864), 2n = 50 and FN = 76 in Marcusenius cyprinoides (Linnaeus, 1758), 2n = 52 and FN = 52 in Mormyrops anguilloides (Linnaeus, 1758). Karyotype structure in the latter species seems to be close to the ancestral condition for the family. This hypothesis is discussed in the light of available data on karyotype diversity and phylogeny of mormyrids.

15.
BMC Med Genomics ; 13(Suppl 8): 129, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948204

RESUMO

BACKGROUND: Prostate cancer is one of the most common and socially significant cancers among men. The aim of our study was to reveal changes in miRNA expression profiles associated with lymphatic dissemination in prostate cancer and to identify the most prominent miRNAs as potential prognostic markers for future studies. METHODS: High-throughput miRNA sequencing was performed for 44 prostate cancer specimens taken from Russian patients, with and without lymphatic dissemination (N1 - 20 samples; N0 - 24 samples). RESULTS: We found at least 18 microRNAs with differential expression between N0 and N1 sample groups: miR-182-5p, miR-183-5p, miR-96-5p, miR-25-3p, miR-93-5p, miR-7-5p, miR-615-3p, miR-10b, miR-1248 (N1-miRs; elevated expression in N1 cohort; p < 0.05); miR-1271-5p, miR-184, miR-222-3p, miR-221-5p, miR-221-3p, miR-455-3p, miR-143-5p, miR-181c-3p and miR-455-5p (N0-miRs; elevated expression in N0; p < 0.05). The expression levels of N1-miRs were highly correlated between each other (the same is applied for N0-miRs) and the expression levels of N0-miRs and N1-miRs were anti-correlated. The tumor samples can be divided into two groups depending on the expression ratio between N0-miRs and N1-miRs. CONCLUSIONS: We found the miRNA expression signature associated with lymphatic dissemination, in particular on the Russian patient cohort. Many of these miRNAs are well-known players in either oncogenic transformation or tumor suppression. Further experimental studies with extended sampling are required to validate these results.


Assuntos
Metástase Linfática/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/metabolismo , RNA-Seq
16.
Zookeys ; 888: 133-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754323

RESUMO

The first genetic study of the holotype of the Gansu short-tailed shrew, Blarinella griselda Thomas, 1912, is presented. The mitochondrial analysis demonstrated that the type specimen of B. griselda is close to several recently collected specimens from southern Gansu, northern Sichuan and Shaanxi, which are highly distinct from the two species of Asiatic short-tailed shrews of southern Sichuan, Yunnan, and Vietnam, B. quadraticauda and B. wardi. Our analysis of four nuclear genes supported the placement of B. griselda as sister to B. quadraticauda / B. wardi, with the level of divergence between these two clades corresponding to that among genera of Soricinae. A new generic name, Parablarinella, is proposed for the Gansu short-tailed shrew. Karyotypes of Parablarinella griselda (2n = 49, NFa = 50) and B. quadraticauda (2n = 49, NFa = 62) from southern Gansu are described. The tribal affinities of Blarinellini and Blarinini are discussed.

17.
IEEE Trans Med Imaging ; 27(7): 897-906, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18599395

RESUMO

We present an algorithm to reconstruct helical cone beam computed tomography (CT) data acquired at variable pitch. The algorithm extracts a halfscan segment of projections using an extended version of the advanced single slice rebinning (ASSR) algorithm. ASSR rebins constant pitch cone beam data to fan beam projections that approximately lie on a plane that is tilted to optimally fit the source helix. For variable pitch, the error between the tilted plane chosen by ASSR and the source helix increases, resulting in increased image artifacts. To reduce the artifacts, we choose a reconstruction plane, which is tilted and shifted relative to the source trajectory. We then correct rebinned fan beam data using John's equation to virtually move the source into the tilted and shifted reconstruction plane. Results obtained from simulated phantom images and scanner images demonstrate the applicability of the proposed algorithm.


Assuntos
Artefatos , Processamento de Sinais Assistido por Computador , Software , Tomografia Computadorizada Espiral/métodos , Difração de Raios X , Algoritmos , Imageamento Tridimensional/métodos , Integração de Sistemas , Tomógrafos Computadorizados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA