Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
2.
Mol Cell ; 84(15): 2807-2821, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39025071

RESUMO

RAS proteins are conserved guanosine triphosphate (GTP) hydrolases (GTPases) that act as molecular binary switches and play vital roles in numerous cellular processes. Upon GTP binding, RAS GTPases adopt an active conformation and interact with specific proteins termed RAS effectors that contain a conserved ubiquitin-like domain, thereby facilitating downstream signaling. Over 50 effector proteins have been identified in the human proteome, and many have been studied as potential mediators of RAS-dependent signaling pathways. Biochemical and structural analyses have provided mechanistic insights into these effectors, and studies using model organisms have complemented our understanding of their role in physiology and disease. Yet, many critical aspects regarding the dynamics and biological function of RAS-effector complexes remain to be elucidated. In this review, we discuss the mechanisms and functions of known RAS effector proteins, provide structural perspectives on RAS-effector interactions, evaluate their significance in RAS-mediated signaling, and explore their potential as therapeutic targets.


Assuntos
Transdução de Sinais , Proteínas ras , Humanos , Proteínas ras/metabolismo , Proteínas ras/química , Animais , Ligação Proteica , Modelos Moleculares , Relação Estrutura-Atividade , Conformação Proteica , Guanosina Trifosfato/metabolismo
3.
Annu Rev Cancer Biol ; 8: 97-113, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38882927

RESUMO

Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.

4.
Methods Mol Biol ; 2797: 47-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570452

RESUMO

RAS proteins play a vital role in regulating downstream signaling and essential cellular processes, positioning them as key players in normal cellular physiology and disease development. Among the various isoforms of RAS, KRAS stands out as one of the most frequently mutated genes in human cancer. The prevalence of RAS mutations in cancer often involves single amino acid substitutions at codons 12, 13, or 61. These mutations disrupt the RAS protein's inherent ability to transition between its active and inactive states, resulting in a constant activation signal and driving uncontrolled cell growth. Crystallization and structural analysis of KRAS with inhibitors and RAS-binding proteins play a pivotal role in unraveling the structural and mechanistic details of KRAS function, aiding in drug discovery efforts, and advancing our understanding of KRAS-driven diseases. Here, we present our experimental methodology for crystallizing KRAS in the presence of covalent or non-covalent small molecules and proteins acting as effectors or regulators of RAS. We detail the techniques for successful crystallization and the subsequent optimization of crystallization conditions. The resulting crystals and their structures will provide valuable insights into the key interactions between KRAS and its partner proteins or potential inhibitors, offering a foundation for developing targeted therapies that are more potent and selective against KRAS-driven cancers.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas de Transporte/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo , Transdução de Sinais , Neoplasias/genética , Mutação
5.
Commun Biol ; 7(1): 260, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431713

RESUMO

RAF kinases are integral to the RAS-MAPK signaling pathway, and proper RAF1 folding relies on its interaction with the chaperone HSP90 and the cochaperone CDC37. Understanding the intricate molecular interactions governing RAF1 folding is crucial for comprehending this process. Here, we present a cryo-EM structure of the closed-state RAF1-HSP90-CDC37 complex, where the C-lobe of the RAF1 kinase domain binds to one side of the HSP90 dimer, and an unfolded N-lobe segment of the RAF1 kinase domain threads through the center of the HSP90 dimer. CDC37 binds to the kinase C-lobe, mimicking the N-lobe with its HxNI motif. We also describe structures of HSP90 dimers without RAF1 and CDC37, displaying only N-terminal and middle domains, which we term the semi-open state. Employing 1 µs atomistic simulations, energetic decomposition, and comparative structural analysis, we elucidate the dynamics and interactions within these complexes. Our quantitative analysis reveals that CDC37 bridges the HSP90-RAF1 interaction, RAF1 binds HSP90 asymmetrically, and that HSP90 structural elements engage RAF1's unfolded region. Additionally, N- and C-terminal interactions stabilize HSP90 dimers, and molecular interactions in HSP90 dimers rearrange between the closed and semi-open states. Our findings provide valuable insight into the contributions of HSP90 and CDC37 in mediating client folding.


Assuntos
Proteínas de Ciclo Celular , Chaperoninas , Humanos , Proteínas de Ciclo Celular/metabolismo , Ligação Proteica , Chaperoninas/química , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90
6.
Sci Adv ; 10(7): eadj4137, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354232

RESUMO

KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Conformação Molecular , Isoformas de Proteínas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
7.
Cancer Res ; 83(19): 3176-3183, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37556505

RESUMO

RAS proteins are GTPases that regulate a wide range of cellular processes. RAS activity is dependent on its nucleotide-binding status, which is modulated by guanine nucleotide exchange factors (GEF) and GTPase-activating proteins (GAP). KRAS can be acetylated at lysine 104 (K104), and an acetylation-mimetic mutation of K104 to glutamine (K104Q) attenuates the in vitro-transforming capacity of oncogenic KRAS by interrupting GEF-induced nucleotide exchange. To assess the effect of this mutation in vivo, we used CRISPR-Cas9 to generate mouse models carrying the K104Q point mutation in wild-type and conditional KrasLSL-G12D alleles. Homozygous animals for K104Q were viable, fertile, and arose at the expected Mendelian frequency, indicating that K104Q is not a complete loss-of-function mutation. Consistent with our previous findings from in vitro studies, however, the oncogenic activity of KRASG12D was significantly attenuated by mutation at K104. Biochemical and structural analysis indicated that the G12D and K104Q mutations cooperate to suppress GEF-mediated nucleotide exchange, explaining the preferential effect of K104Q on oncogenic KRAS. Furthermore, K104 functioned in an allosteric network with M72, R73, and G75 on the α2 helix of the switch-II region. Intriguingly, point mutation of glycine 75 to alanine (G75A) also showed a strong negative regulatory effect on KRASG12D. These data demonstrate that lysine at position 104 is critical for the full oncogenic activity of mutant KRAS and suggest that modulating the sites in its allosteric network may provide a unique therapeutic approach in cancers expressing mutant KRAS. SIGNIFICANCE: An allosteric network formed by interaction between lysine 104 and residues in the switch-II domain is required for KRAS oncogenicity, which could be exploited for developing inhibitors of the activated oncoprotein.


Assuntos
Lisina , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Regulação Alostérica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Lisina/metabolismo , Mutação , Nucleotídeos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/metabolismo
8.
Sci Adv ; 9(28): eadf4766, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450595

RESUMO

RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.


Assuntos
Neoplasias Pulmonares , Síndrome de Noonan , Animais , Camundongos , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Síndrome de Noonan/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Cardiomegalia/genética , Transdução de Sinais
9.
Commun Biol ; 6(1): 594, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268708

RESUMO

Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.


Assuntos
Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sítios de Ligação , Proteínas ras/metabolismo , Conformação Proteica , Espectroscopia de Ressonância Magnética
10.
J Biol Chem ; 299(6): 104789, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149146

RESUMO

Sprouty-related EVH-1 domain-containing (SPRED) proteins are a family of proteins that negatively regulate the RAS-Mitogen-Activated Protein Kinase (MAPK) pathway, which is involved in the regulation of the mitogenic response and cell proliferation. However, the mechanism by which these proteins affect RAS-MAPK signaling has not been elucidated. Patients with mutations in SPRED give rise to unique disease phenotypes; thus, we hypothesized that distinct interactions across SPRED proteins may account for alternative nodes of regulation. To characterize the SPRED interactome and evaluate how members of the SPRED family function through unique binding partners, we performed affinity purification mass spectrometry. We identified 90-kDa ribosomal S6 kinase 2 (RSK2) as a specific interactor of SPRED2 but not SPRED1 or SPRED3. We identified that the N-terminal kinase domain of RSK2 mediates the interaction between amino acids 123 to 201 of SPRED2. Using X-ray crystallography, we determined the structure of the SPRED2-RSK2 complex and identified the SPRED2 motif, F145A, as critical for interaction. We found that the formation of this interaction is regulated by MAPK signaling events. We also find that this interaction between SPRED2 and RSK2 has functional consequences, whereby the knockdown of SPRED2 resulted in increased phosphorylation of RSK substrates, YB1 and CREB. Furthermore, SPRED2 knockdown hindered phospho-RSK membrane and nuclear subcellular localization. We report that disruption of the SPRED2-RSK complex has effects on RAS-MAPK signaling dynamics. Our analysis reveals that members of the SPRED family have unique protein binding partners and describes the molecular and functional determinants of SPRED2-RSK2 complex dynamics.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas Repressoras , Proteínas Quinases S6 Ribossômicas 90-kDa , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Humanos , Linhagem Celular , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Técnicas de Silenciamento de Genes , Transporte Proteico/genética , Ligação Proteica , Estrutura Terciária de Proteína , Modelos Moleculares , Neurofibromina 1/metabolismo
11.
FEBS J ; 290(20): 4852-4863, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37074066

RESUMO

RAF activation is a key step for signalling through the mitogen-activated protein kinase (MAPK) pathway. The SHOC2 protein, along with MRAS and PP1C, forms a high affinity, heterotrimeric holoenzyme that activates RAF kinases by dephosphorylating a specific phosphoserine. Recently, our research, along with that of three other teams, has uncovered valuable structural and functional insights into the SHOC2-MRAS-PP1C (SMP) holoenzyme complex. In this structural snapshot, we review SMP complex assembly, the dependency on the bound-nucleotide state of MRAS, the substitution of MRAS by the canonical RAS proteins and the roles of SHOC2 and MRAS on PP1C activity and specificity. Furthermore, we discuss the effect of several RASopathy mutations identified within the SMP complex and explore potential therapeutic approaches for targeting the SMP complex in RAS/RAF-driven cancers and RASopathies.


Assuntos
Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo , Holoenzimas/metabolismo
12.
Mol Cell ; 83(8): 1210-1215, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36990093

RESUMO

One of the open questions in RAS biology is the existence of RAS dimers and their role in RAF dimerization and activation. The idea of RAS dimers arose from the discovery that RAF kinases function as obligate dimers, which generated the hypothesis that RAF dimer formation might be nucleated by G-domain-mediated RAS dimerization. Here, we review the evidence for RAS dimerization and describe a recent discussion among RAS researchers that led to a consensus that the clustering of two or more RAS proteins is not due to the stable association of G-domains but, instead, is a consequence of RAS C-terminal membrane anchors and the membrane phospholipids with which they interact.


Assuntos
Quinases raf , Proteínas ras , Dimerização , Consenso , Proteínas ras/genética , Proteínas ras/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Lipídeos , Proteínas Proto-Oncogênicas c-raf/metabolismo
13.
Nat Struct Mol Biol ; 29(10): 966-977, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36175670

RESUMO

SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.


Assuntos
Síndrome de Noonan , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/metabolismo , Fosfosserina/metabolismo , Proteína Fosfatase 1 , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
14.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778842

RESUMO

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Assuntos
Cisteína , Proteínas Proto-Oncogênicas c-raf , Sítios de Ligação , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Solventes/metabolismo
15.
J Chem Theory Comput ; 18(8): 5025-5045, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866871

RESUMO

The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Humanos , Bicamadas Lipídicas/química , Estrutura Secundária de Proteína , Proteínas/química
16.
J Am Chem Soc ; 144(9): 4196-4205, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35213144

RESUMO

KRAS is the most frequently mutated RAS protein in cancer patients, and it is estimated that about 20% of the cancer patients in the United States carried mutant RAS proteins. To accelerate therapeutic development, structures and dynamics of RAS proteins had been extensively studied by various biophysical techniques for decades. Although 31P NMR studies revealed population equilibrium of the two major states in the active GMPPNP-bound form, more complex conformational dynamics in RAS proteins and oncogenic mutants subtly modulate the interactions with their downstream effectors. We established a set of customized NMR relaxation dispersion techniques to efficiently and systematically examine the ms-µs conformational dynamics of RAS proteins. This method allowed us to observe varying synchronized motions that connect the effector and allosteric lobes in KRAS. We demonstrated the role of conformational dynamics of KRAS in controlling its interaction with the Ras-binding domain of the downstream effector RAF1, the first kinase in the MAPK pathway. This allows one to explain, as well as to predict, the altered binding affinities of various KRAS mutants, which was neither previously reported nor apparent from the structural perspective.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Fenômenos Fisiológicos Celulares , Humanos , Conformação Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas ras/química
17.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
18.
Cancer Discov ; 12(4): 899-912, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35046094

RESUMO

The RAS GTPases are frequently mutated in human cancer, with KRAS being the predominant tumor driver. For many years, it has been known that the structure and function of RAS are integrally linked, as structural changes induced by GTP binding or mutational events determine the ability of RAS to interact with regulators and effectors. Recently, a wealth of information has emerged from structures of specific KRAS mutants and from structures of multiprotein complexes containing RAS and/or RAF, an essential effector of RAS. These structures provide key insights regarding RAS and RAF regulation as well as promising new strategies for therapeutic intervention. SIGNIFICANCE: The RAS GTPases are major drivers of tumorigenesis, and for RAS proteins to exert their full oncogenic potential, they must interact with the RAF kinases to initiate ERK cascade signaling. Although binding to RAS is typically a prerequisite for RAF to become an activated kinase, determining the molecular mechanisms by which this interaction results in RAF activation has been a challenging task. A major advance in understanding this process and RAF regulation has come from recent structural studies of various RAS and RAF multiprotein signaling complexes, revealing new avenues for drug discovery.


Assuntos
Quinases raf , Proteínas ras , Humanos , Sistema de Sinalização das MAP Quinases , Oncogenes , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Quinases raf/genética , Quinases raf/metabolismo , Proteínas ras/metabolismo
20.
Mol Cancer ; 20(1): 141, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727930

RESUMO

BACKGROUND: DLC1, a tumor suppressor gene that is downregulated in many cancer types by genetic and nongenetic mechanisms, encodes a protein whose RhoGAP and scaffolding activities contribute to its tumor suppressor functions. The role of the DLC1 START (StAR-related lipid transfer; DLC1-START) domain, other than its binding to Caveolin-1, is poorly understood. In other START domains, a key function is that they bind lipids, but the putative lipid ligand for DLC1-START is unknown. METHODS: Lipid overlay assays and Phosphatidylserine (PS)-pull down assays confirmed the binding of DLC1-START to PS. Co-immunoprecipitation studies demonstrated the interaction between DLC1-START and Phospholipase C delta 1 (PLCD1) or Caveolin-1, and the contribution of PS to those interactions. Rho-GTP, cell proliferation, cell migration, and/or anchorage-independent growth assays were used to investigate the contribution of PS and PLCD1, or the implications of TCGA cancer-associated DLC1-START mutants, to DLC1 functions. Co-immunoprecipitations and PS-pull down assays were used to investigate the molecular mechanisms underlying the impaired functions of DLC1-START mutants. A structural model of DLC1-START was also built to better understand the structural implications of the cancer-associated mutations in DLC1-START. RESULTS: We identified PS as the lipid ligand for DLC1-START and determined that DLC1-START also binds PLCD1 protein in addition to Caveolin-1. PS binding contributes to the interaction of DLC1 with Caveolin-1 and with PLCD1. The importance of these activities for tumorigenesis is supported by our analysis of 7 cancer-associated DLC1-START mutants, each of which has reduced tumor suppressor function but retains wildtype RhoGAP activity. Our structural model of DLC1-START indicates the mutants perturb different elements within the structure, which is correlated with our experimental findings that the mutants are heterogenous with regard to the deficiency of their binding properties. Some have reduced PS binding, others reduced PLCD1 and Caveolin-1 binding, and others are deficient for all of these properties. CONCLUSION: These observations highlight the importance of DLC1-START for the tumor suppressor function of DLC1 that is RhoGAP-independent. They also expand the versatility of START domains, as DLC1-START is the first found to bind PS, which promotes the binding to other proteins.


Assuntos
Caveolina 1/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipase C delta/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Proteínas de Transporte , Caveolina 1/química , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Proteínas Ativadoras de GTPase/genética , Humanos , Modelos Moleculares , Mutação , Fosfolipase C delta/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA