Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Org Chem ; 87(10): 6680-6694, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35504046

RESUMO

6-Azidotetrazolo[5,1-a]phthalazine (ATPH) is a nitrogen-rich compound of surprisingly broad interest. It is purported to be a natural product, yet it is closely related to substances developed as explosives and is highly polymorphic despite having a nearly planar structure with little flexibility. Seven solid forms of ATPH have been characterized by single-crystal X-ray diffraction. The structures show diverse patterns of molecular organization, including both stacked sheets and herringbone packing. In all cases, N···N and C-H···N interactions play key roles in ensuring molecular cohesion. The high polymorphism of ATPH appears to arise in part from the ability of virtually every atom of nitrogen and hydrogen in the molecule to take part in close N···N and C-H···N contacts. As a result, adjacent molecules can adopt many different relative orientations that are energetically similar, thereby generating a polymorphic landscape with an unusually high density of potential structures. This landscape has been explored in detail by the computational prediction of crystal structures. Studying ATPH has provided insights into the field of energetic materials, where access to multiple polymorphs can be used to improve performance and clarify how it depends on molecular packing. In addition, our work with ATPH shows how valuable insights into molecular crystallization, often gleaned from statistical analyses of structural databases, can also come from in-depth empirical and theoretical studies of single compounds that show distinctive behavior.


Assuntos
Produtos Biológicos , Substâncias Explosivas , Cristalografia por Raios X , Nitrogênio , Ftalazinas
2.
ACS Omega ; 7(12): 10674-10686, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382268

RESUMO

Hybrid composite materials are a class of materials where more than one type of reinforcement is integrated into a matrix to achieve superior properties. This typically involves nanoparticle fillers employed within traditional advanced composites with fiber reinforcements such as carbon or glass. The current study builds on previous investigations of boron nitride nanotube (BNNT) hybrid composites, specifically glass fiber (GF)-epoxy/BNNT composite laminates. GF is an effective and affordable primary reinforcement fiber in many applications, and boron nitride nanotubes (BNNTs) exhibit impressive mechanical properties comparable to carbon nanotubes (CNTs) with distinct functional properties, such as electrical insulation, which is desirable in manufacturing insulating composites when combined with GF. GF-epoxy/BNNT composite laminates, incorporating BNNT materials with different loadings (1 and 2 wt %) and purity, were manufactured using a hand layup technique and prepared for three-point bending, modified Charpy, dynamic mechanical analysis (DMA), and fracture toughness (mode I and mode II) measurements. A comprehensive microscopy study was also performed using scanning electron microscopy (SEM) showing prominent failure mechanism, nanotube dispersion, and their mode of reinforcement in different loading scenarios. Enhanced properties, including a 43% increase in mode II fracture toughness, were observed in hybrid composites with 1 wt % BNNT compared to the GF composites with neat epoxy, and the reinforcement mechanisms were discussed.

3.
J Phys Chem Lett ; 11(10): 4179-4185, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32370502

RESUMO

We report on investigation, by correlated polarized excitation fluorescence microscopy (PEFM) and atomic force microscopy (AFM) imaging, of the conformational order of regiorandom poly(3-hexyl-thiophene) (rra-P3HT) aggregated on two boron nitride nanotube (BNNT) materials (BNNT-2 and BNNT-3) processed by different purification methods. rra-P3HT photoluminescence excited by linearly polarized light shows polarization direction-dependent intensity with a modulation depth, M, generally >0.5 for rra-P3HT on nanotubes and <0.5 for rra-P3HT on nontubular impurities. PEFM-measured modulation depth value distributions can be decomposed into two components, one corresponding to ordered rra-P3HT on nanotubes and the other to disordered rra-P3HT on impurities. The nanotube component peaks at M = 0.64 and 0.70 and comprises 60% and 78% of the normalized distribution for rra-P3HT on BNNT-2 and BNNT-3, respectively, indicating higher quality and higher fraction of nanotubes in the latter material. The method can be integrated in a material development platform to monitor production and purification progress.

4.
Org Lett ; 21(17): 6593-6596, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31240939

RESUMO

A new methodology to synthesize 2,6-di-, and 2,2',6-trisubstituted morpholines via the reduction of oxabicyclic tetrazoles under mild conditions is described. The reaction proved successful for a wide range of tetrazoles, including sterically encumbered ones harboring gem-substituents on tertiary carbon centers. The mechanism for the decades-old reduction of tetrazoles to secondary amines is elucidated.

5.
ACS Omega ; 4(26): 22108-22113, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891091

RESUMO

Stable carbon isotope (δ(13C)) analysis can provide information concerning the starting materials and the production process of a material. Carbon nanotubes (CNTs) are produced using a variety of starting materials, catalysts, and production methods. The use of δ(13C) as a tool to infer the nature of starting materials to gain insight into the mechanics of CNT growth was evaluated. The production process of NRC's SWCNT-1 was traced via the δ(13C) measurement of the available starting materials, intermediate products, and the final product. As isotopic fractionation is likely negligible at high temperatures, the δ(13C) value of the starting materials was reflected in the δ(13C) value of the final CNT product. For commercially available CNTs, the estimated δ(13C) values of identified starting materials were related to the δ(13C) signatures of CNTs. Using this information and the δ(13C) values of CNTs, the nature of unknown carbon sources was inferred for some samples. The use of δ(13C) analysis may be used as a tracer to differentiate between those processes that use relatively 13C-depleted carbon source(s) such as carbon monoxide, methane, or natural gas, and those that do not.

6.
Nanoscale Adv ; 1(5): 1914-1923, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134231

RESUMO

As boron nitride nanotubes (BNNTs) find increased use in numerous applications, potential adverse health effects of BNNT exposure are a growing concern. Current in vitro cytotoxicity studies on BNNTs are inconsistent and even contradictory, likely due to the lack of reference materials, standardized characterization methods and measurement protocols. New approaches, particularly with the potential to reliably relate in vitro to in vivo studies, are critically needed. This work introduces a novel atomic force microscopy (AFM)-based cardiomyocyte assay that reliably assesses the cytotoxicity of a well-characterized boron nitride nanotube reference material, code named BNNT-1. High energy probe sonication was used to modify and control the length of BNNT-1. The polymer polyethylenimine (PEI) was used concurrently with sonication to produce stable, aqueous dispersions of BNNT-1. These dispersions were used to perform a systematic analysis on both the length and height of BNNT-1 via a correlated characterization approach of dynamic light scattering (DLS) and AFM. Cytotoxicity studies using the novel cardiomyocyte AFM model were in agreement with traditional colorimetric cell metabolic assays, both revealing a correlation between tube length and cytotoxicity with longer tubes having higher cytotoxicity. In addition to the size-dependent cytotoxicity, it was found that BNNT-1 exhibits concentration and cell-line dependent cytotoxic effects.

7.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516055

RESUMO

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

8.
ACS Nano ; 12(1): 884-893, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29301086

RESUMO

We recently demonstrated scalable manufacturing of boron nitride nanotubes (BNNTs) directly from hexagonal BN (hBN) powder by using induction thermal plasma, with a high-yield rate approaching 20 g/h. The main finding was that the presence of hydrogen is crucial for the high-yield growth of BNNTs. Here we investigate the detailed role of hydrogen by numerical modeling and in situ optical emission spectroscopy (OES) and reveal that both the thermofluidic fields and chemical pathways are significantly altered by hydrogen in favor of rapid growth of BNNTs. The numerical simulation indicated improved particle heating and quenching rates (∼105 K/s) due to the high thermal conductivity of hydrogen over the temperature range of 3500-4000 K. These are crucial for the complete vaporization of the hBN feedstock and rapid formation of nanosized B droplets for the subsequent BNNT growth. Hydrogen is also found to extend the active BNNT growth zone toward the reactor downstream, maintaining the gas temperature above the B solidification limit (∼2300 K) by releasing the recombination heat of H atoms, which starts at 3800 K. The OES study revealed that H radicals also stabilize B or N radicals from dissociation of the feedstock as BH and NH radicals while suppressing the formation of N2 or N2+ species. Our density functional theory calculations showed that such radicals can provide faster chemical pathways for the formation of BN compared with relatively inert N2.

9.
ACS Appl Mater Interfaces ; 9(36): 30840-30849, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28829567

RESUMO

We have fabricated carbon nanotube (CNT)-polyurethane (TPU) sheets via a one-step filtration method that uses a TPU solvent/nonsolvent combination. This solution method allows for control of the composition and processing conditions, significantly reducing both the filtration time and the need for large volumes of solvent to debundle the CNTs. Through an appropriate selection of the solvents and tuning the solvent/nonsolvent ratio, it is possible to enhance the interaction between the CNTs and the polymer chains in solution and improve the CNT exfoliation in the nanocomposites. The composition of the nanocomposites, which defines the characteristics of the material and its mechanical properties, can be precisely controlled. The highest improvements in tensile properties were achieved at a CNT:TPU weight ratio around 35:65 with a Young's modulus of 1270 MPa, stress at 50% strain of 35 MPa, and strength of 41 MPa, corresponding to ∼10-fold improvement in modulus and ∼7-fold improvement in stress at 50% strain, while maintaining a high failure strain. At the same composition, CNTs with higher aspect ratio produce nanocomposites with greater improvements (e.g., strength of 99 MPa). Electrical conductivity also shows a maximum near the same composition, where it can exceed the values achieved for the pristine nanotube buckypaper. The trend in mechanical and electrical properties was understood in terms of the CNT-TPU interfacial interactions and morphological changes occurring in the nanocomposite sheets as a function of increasing the TPU content. The availability of such a simple method and the understanding of the structure-property relationships are expected to be broadly applicable in the nanocomposites field.

10.
ACS Nano ; 9(12): 12573-82, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26580970

RESUMO

Boron nitride nanotubes (BNNTs) exhibit a range of properties that hold great potential for many fields of science and technology; however, they have inherently low chemical reactivity, making functionalization for specific applications difficult. Here we propose that covalent functionalization of BNNTs via reduction chemistry could be a highly promising and viable strategy. Through density functional theory calculations of the electron affinity of BNNTs and their binding energies with various radicals, we reveal that their chemical reactivity can be significantly enhanced via reducing the nanotubes (i.e., negatively charging). For example, a 5.5-fold enhancement in reactivity of reduced BNNTs toward NH2 radicals was predicted relative to their neutral counterparts. The localization characteristics of the BNNT π electron system lead the excess electrons to fill the empty p orbitals of boron sites, which promote covalent bond formation with an unpaired electron from a radical molecule. In support of our theoretical findings, we also experimentally investigated the covalent alkylation of BNNTs via reduction chemistry using 1-bromohexane. The thermogravimetric measurements showed a considerable weight loss (12-14%) only for samples alkylated using reduced BNNTs, suggesting their significantly improved reactivity over neutral BNNTs. This finding will provide an insight in developing an effective route to chemical functionalization of BNNTs.

11.
Toxicol In Vitro ; 29(1): 142-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25283091

RESUMO

In vitro cytotoxicity assays are essential tools in the screening of engineered nanomaterials (NM) for cellular toxicity. The resazurin live cell assay is widely used because it is non-destructive and is well suited for high-throughput platforms. However, NMs, in particular carbon nanotubes (CNT) can interfere in assays through quenching of transmitted light or fluorescence. We show that using the resazurin assay with time-point reading of clarified supernatants resolves this problem. Human lung epithelial (A549) and murine macrophage (J774A.1) cell lines were exposed to NMs in 96-well plates in 200 µL of media/well. After 24 h incubation, 100 µL of supernatant was removed, replaced with resazurin reagent in culture media and aliquots at 10 min and 120 min were transferred to black-wall 96-well plates. The plates were quick-spun to sediment the residual CNTs and fluorescence was top-read (λEx=540 nm, λEm=600 nm). The procedure was validated for CNTs as well as silica nanoparticles (SiNP). There was no indication of reduction of resazurin by the CNTs. Stability of resorufin, the fluorescent product of the resazurin reduction was then assessed. We found that polar CNTs could decrease the fluorescence signal for resorufin, possibly through oxidation to resazurin or hyper-reduction to hydroxyresorufin. This effect can be easily quantified for elimination of the bias. We recommend that careful consideration must be given to fluorimetric/colorimetric in vitro toxicological assessments of optically/chemically active NMs in order to relieve any potential artifacts due to the NMs themselves.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Nanopartículas/toxicidade , Nanotubos de Carbono/efeitos adversos , Oxazinas , Testes de Toxicidade/métodos , Xantenos , Linhagem Celular , Fluorescência , Humanos
12.
Nanotoxicology ; 9(2): 148-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24713075

RESUMO

While production of engineered carbon nanotubes (CNTs) has escalated in recent years, knowledge of risk associated with exposure to these materials remains unclear. We report on the cytotoxicity of four CNT variants in human lung epithelial cells (A549) and murine macrophages (J774). Morphology, metal content, aggregation/agglomeration state, pore volume, surface area and modifications were determined for the pristine and oxidized single-walled (SW) and multi-walled (MW) CNTs. Cytotoxicity was evaluated by cellular ATP content, BrdU incorporation, lactate dehydrogenase (LDH) release, and CellTiter-Blue (CTB) reduction assays. All CNTs were more cytotoxic than respirable TiO2 and SiO2 reference particles. Oxidation of CNTs removed most metallic impurities but introduced surface polar functionalities. Although slopes of fold changes for cytotoxicity endpoints were steeper with J774 compared to A549 cells, CNT cytotoxicity ranking in both cell types was assay-dependent. Based on CTB reduction and BrdU incorporation, the cytotoxicity of the polar oxidized CNTs was higher compared to the pristine CNTs. In contrast, pristine CNTs were more cytotoxic than oxidized CNTs when assessed for cellular ATP and LDH. Correlation analyses between CNTs' physico-chemical properties and average relative potency revealed the impact of metal content and surface area on the potency values estimated using ATP and LDH assays, while surface polarity affected the potency values estimated from CTB and BrdU assays. We show that in order to reliably estimate the risk posed by these materials, in vitro toxicity assessment of CNTs should be conducted with well characterized materials, in multiple cellular models using several cytotoxicity assays that report on distinct cellular processes.


Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Exposição Ambiental/efeitos adversos , Células Epiteliais/citologia , Humanos , Macrófagos/citologia , Camundongos , Oxirredução , Propriedades de Superfície , Testes de Toxicidade
13.
ACS Nano ; 8(6): 6211-20, 2014 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-24807071

RESUMO

Boron nitride nanotubes (BNNTs) exhibit a range of properties that are as compelling as those of carbon nanotubes (CNTs); however, very low production volumes have prevented the science and technology of BNNTs from evolving at even a fraction of the pace of CNTs. Here we report the high-yield production of small-diameter BNNTs from pure hexagonal boron nitride powder in an induction thermal plasma process. Few-walled, highly crystalline small-diameter BNNTs (∼5 nm) are produced exclusively and at an unprecedentedly high rate approaching 20 g/h, without the need for metal catalysts. An exceptionally high cooling rate (∼10(5) K/s) in the induction plasma provides a strong driving force for the abundant nucleation of small-sized B droplets, which are known as effective precursors for small-diameter BNNTs. It is also found that the addition of hydrogen to the reactant gases is crucial for achieving such high-quality, high-yield growth of BNNTs. In the plasma process, hydrogen inhibits the formation of N2 from N radicals and promotes the creation of B-N-H intermediate species, which provide faster chemical pathways to the re-formation of a h-BN-like phase in comparison to nitridation from N2. We also demonstrate the fabrication of macroscopic BNNT assemblies such as yarns, sheets, buckypapers, and transparent thin films at large scales. These findings represent a seminal milestone toward the exploitation of BNNTs in real-world applications.

14.
Nanoscale ; 6(4): 2328-39, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24418869

RESUMO

A systematic study on the use of 9,9-dialkylfluorene homopolymers (PFs) for large-diameter semiconducting (sc-) single-walled carbon nanotube (SWCNT) enrichment is the focus of this report. The enrichment is based on a simple three-step extraction process: (1) dispersion of as-produced SWCNTs in a PF solution; (2) centrifugation at a low speed to separate the enriched sc-tubes; (3) filtration to collect the enriched sc-SWCNTs and remove excess polymer. The effect of the extraction conditions on the purity and yield including molecular weight and alkyl side-chain length of the polymers, SWCNT concentration, and polymer/SWCNT ratio have been examined. It was observed that PFs with alkyl chain lengths of C10, C12, C14, and C18, all have an excellent capability to enrich laser-ablation sc-SWCNTs when their molecular weight is larger than ∼10 000 Da. More detailed studies were therefore carried out with the C12 polymer, poly(9,9-di-n-dodecylfluorene), PFDD. It was found that a high polymer/SWCNT ratio leads to an enhanced yield but a reduced sc-purity. A ratio of 0.5-1.0 gives an excellent sc-purity and a yield of 5-10% in a single extraction as assessed by UV-vis-NIR absorption spectra. The yield can also be promoted by multiple extractions while maintaining high sc-purity. Mechanistic experiments involving time-lapse dispersion studies reveal that m-SWCNTs have a lower propensity to be dispersed, yielding a sc-SWCNT enriched material in the supernatant. Dispersion stability studies with partially enriched sc-SWCNT material further reveal that m-SWCNTs : PFDD complexes will re-aggregate faster than sc-SWCNTs : PFDD complexes, providing further sc-SWCNT enrichment. This result confirms that the enrichment was due to the much tighter bundles in raw materials and the more rapid bundling in dispersion of the m-SWCNTs. The sc-purity is also confirmed by Raman spectroscopy and photoluminescence excitation (PLE) mapping. The latter shows that the enriched sc-SWCNT sample has a narrow chirality and diameter distribution dominated by the (10,9) species with d = 1.29 nm. The enriched sc-SWCNTs allow a simple drop-casting method to form a dense nanotube network on SiO2/Si substrates, leading to thin film transistors (TFTs) with an average mobility of 27 cm(2) V(-1) s(-1) and an average on/off current ratio of 1.8 × 10(6) when considering all 25 devices having 25 µm channel length prepared on a single chip. The results presented herein demonstrate how an easily scalable technique provides large-diameter sc-SWCNTs with high purity, further enabling the best TFT performance reported to date for conjugated polymer enriched sc-SWCNTs.


Assuntos
Polímeros de Fluorcarboneto/química , Dióxido de Silício/química , Silício/química , Transistores Eletrônicos , Análise Espectral Raman
15.
Nanotoxicology ; 8(3): 295-304, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23421642

RESUMO

Aquatic organisms are susceptible to waterborne nanoparticles (NP) and there is only limited understanding of the mechanisms by which these emerging contaminants may affect biological processes. This study used silicon (nSi), cadmium selenide (nCdSe), silver (nAg) and zinc NPs (nZnO) as well as single-walled carbon nanotubes (SWCNT) to assess NP effects on zebrafish (Danio rerio) hatch. Exposure of 10 mg/L nAg and nCdSe delayed zebrafish hatch and 100 mg/L of nCdSe as well as 10 and 100 mg/L of uncoated nZnO completely inhibited hatch and the embryos died within the chorion. Both the morphology and the movement of the embryos were not affected, and it was determined that the main mechanism of hatch inhibition by NPs is likely through the interaction of NPs with the zebrafish hatching enzyme. Furthermore, it was concluded that the observed effects arose from the NPs themselves and not their dissolved metal components.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Metais Pesados/toxicidade , Peixe-Zebra/fisiologia , Animais , Embrião não Mamífero/química , Embrião não Mamífero/patologia , Embrião não Mamífero/fisiologia , Nanotubos de Carbono/toxicidade , Peptídeo Hidrolases/metabolismo , Silício/toxicidade
16.
Nanotechnology ; 24(26): 265701, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23732221

RESUMO

Previous studies suggest that carbon nanotubes (CNTs) have a considerable influence on the curing behavior and crosslink density of epoxy resins. This invariably has an important effect on different thermal and mechanical properties of the epoxy network. This work focuses on the important role of the epoxy/hardener mixing ratio on the mechanical and thermal properties of a high temperature aerospace-grade epoxy (MY0510 Araldite as an epoxy and 4,4'-diaminodiphenylsulfone as an aromatic hardener) modified with single-walled carbon nanotubes (SWCNTs). The effects of three different stoichiometries (stoichiometric and off-stoichiometric) on various mechanical and thermal properties (fracture toughness, tensile properties, glass transition temperature) of the epoxy resin and its SWCNT-modified composites were obtained. The results were also supported by Raman spectroscopy and scanning electron microscopy (SEM). For the neat resin, it was found that an epoxy/hardener molar ratio of 1:0.8 provides the best overall properties. In contrast, the pattern in property changes with the reaction stoichiometry was considerably different for composites reinforced with unfunctionalized SWCNTs and reduced SWCNTs. A comparison among composites suggests that a 1:1 molar ratio considerably outperforms the other two ratios examined in this work (1:0.8 and 1:1.1). This composition at 0.2 wt% SWCNT loading provides the highest overall mechanical properties by improving fracture toughness, ultimate tensile strength and ultimate tensile strain of the epoxy resin by 40%, 34%, 54%, respectively.

17.
J Org Chem ; 77(21): 9458-72, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-23083207

RESUMO

This article describes synthetic studies that culminated in the first total synthesis of pactamycin and pactamycate and, in parallel, the two known congeners, de-6-MSA-pactamycin and de-6-MSA-pactamycate, lacking the 6-methylsalicylyl moiety. Starting with L-threonine as a chiron, a series of stereocontrolled condensations led to a key cyclopentenone harboring a spirocyclic oxazoline. A series of systematic functionalizations led initially to the incorrect cyclopentanone epoxide, which was "inverted" under solvolytic conditions. Installation of the remaining groups and manipulation of the oxazoline eventually led to pactamycin, pactamycate, and their desalicylyl analogues.


Assuntos
Ciclopentanos/química , Pactamicina/química , Pactamicina/síntese química , Salicilatos/química , Treonina/química , Estrutura Molecular
18.
ACS Appl Mater Interfaces ; 4(9): 4934-41, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22900593

RESUMO

A microfluidic approach to preparing superparamagnetic microspheres with tunable porosity is described. In this method, droplets consisting of iron oxide nanoparticles, a functional polymer and solvent are formed in a microfluidic channel. The droplets are subsequently collected in solutions of sodium dodecyl sulfate (SDS) where the solvent is left to diffuse out of the droplet phase. By adjusting the concentration of the SDS and the polarity of the solvent of the dispersed phase, the porosity of the microparticles is controlled from non porous to porous structure. The formation of the pores is shown to depend on the rate at which solvent diffuses out of the droplet phase and the availability of SDS to adsorb at the droplet interface.


Assuntos
Magnetismo , Microesferas , Compostos Férricos/química , Nanopartículas Metálicas/química , Técnicas Analíticas Microfluídicas/instrumentação , Porosidade , Dodecilsulfato de Sódio/química
19.
Nanotechnology ; 23(28): 285702, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22717574

RESUMO

Composite materials based on epoxy matrix and single-walled carbon nanotubes (SWCNTs) are able to exhibit outstanding improvements in physical properties when using a tailored covalent functionalization with matrix-based moieties containing terminal amines or epoxide rings. The proper choice of grafted moiety and integration protocol makes it feasible to tune the composite physical properties. At 0.5 wt% SWCNT loading, these composites exhibit up to 65% improvement in storage modulus, 91% improvement in tensile strength, and 65% improvement in toughness. A 15 °C increase in the glass transition temperature relative to the parent matrix was also achieved. This suggests that a highly improved interfacial bonding between matrix and filler, coupled to improved dispersion, are achieved. The degradation temperatures show an upshift in the range of 40-60 °C, which indicates superior thermal performance. Electrical conductivity ranges from ~10(-13) to ~10(-3) S cm(-1), which also shows the possibility of tuning the insulating or conductive behaviour of the composites. The chemical affinity of the functionalization moieties with the matrix and the unchanged molecular structure at the SWCNT/matrix interface are responsible for such improvements.

20.
ACS Appl Mater Interfaces ; 4(4): 1990-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22422047

RESUMO

In this work, a two-step method consisting of in situ polymerization of polymethyl methacrylate (PMMA) in the presence of single-walled carbon nanotubes (SWCNT), followed by the redispersion of the resulting compound in dimethylformamide (DMF), was used to fabricate SWCNT modified with PMMA (SWCNT-PMMA). Raman spectroscopy revealed that PMMA was merely wrapped around the SWCNT when raw SWCNT or purified SWCNT were used as the starting material. However, PMMA was covalently bonded to SWCNT when acid treated SWCNT (SWCNT-COOH) was used as the starting material. SWCNT-PMMA compounds were further diluted in pure PMMA by conventional melt compounding at large scale (several kilograms) to obtain transparent composites containing 0.09 wt % SWCNT. The micro- and nano-dispersion of the SWCNT in the composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The thermal and mechanical properties of the composites were determined by thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), tensile testing, and Charpy impact testing. At the the low SWCNT loading studied, the tensile properties remain unchanged, whereas the impact strength improves by 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA