Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(8): e0136149, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26313002

RESUMO

In animals, silicon is an abundant and differentially distributed trace element that is believed to play important biological functions. One would thus expect silicon concentrations in body fluids to be regulated by silicon transporters at the surface of many cell types. Curiously, however, and even though they exist in plants and algae, no such transporters have been identified to date in vertebrates. Here, we show for the first time that the human aquaglyceroporins, i.e., AQP3, AQP7, AQP9 and AQP10 can act as silicon transporters in both Xenopus laevis oocytes and HEK-293 cells. In particular, heterologously expressed AQP7, AQP9 and AQP10 are all able to induce robust, saturable, phloretin-sensitive silicon transport activity in the range that was observed for low silicon rice 1 (lsi1), a silicon transporter in plant. Furthermore, we show that the aquaglyceroporins appear as relevant silicon permeation pathways in both mice and humans based on 1) the kinetics of substrate transport, 2) their presence in tissues where silicon is presumed to play key roles and 3) their transcriptional responses to changes in dietary silicon. Taken together, our data provide new evidence that silicon is a potentially important biological element in animals and that its body distribution is regulated. They should open up original areas of investigations aimed at deciphering the true physiological role of silicon in vertebrates.


Assuntos
Aquaporinas/metabolismo , Silício/metabolismo , Animais , Aquaporinas/genética , Transporte Biológico Ativo/efeitos dos fármacos , Transporte Biológico Ativo/genética , Células HEK293 , Humanos , Camundongos , Floretina/farmacologia , Xenopus laevis
2.
J Biol Chem ; 282(25): 18083-18093, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17462999

RESUMO

Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.


Assuntos
Simportadores de Cloreto de Sódio-Potássio/metabolismo , Simportadores/fisiologia , Animais , Transporte Biológico , Proteínas de Transporte/química , Epitopos/química , Glutationa Transferase/metabolismo , Imunoprecipitação , Transporte de Íons , Oócitos/metabolismo , Isoformas de Proteínas , Simportadores de Cloreto de Sódio-Potássio/química , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Xenopus laevis , Cotransportadores de K e Cl-
3.
J Gen Physiol ; 126(4): 325-37, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16157691

RESUMO

The absorptive Na(+)-K(+)-Cl(-) cotransporter (NKCC2) is a polytopic protein that forms homooligomeric complexes in the apical membrane of the thick ascending loop of Henle (TAL). It occurs in at least four splice variants (called B, A, F, and AF) that are identical to one another except for a short region in the membrane-associated domain. Although each of these variants exhibits unique functional properties and distributions along the TAL, their teleological purpose and structural organization remain poorly defined. In the current work, we provide additional insight in these regards by showing in mouse that the administration of either furosemide or an H(2)O-rich diet, which are predicted to alter NKCC2 expression in the TAL, exerts differential effects on mRNA levels for the variants, increasing those of A (furosemide) but decreasing those of F and AF (furosemide or H(2)O). Based on a yeast two-hybrid mapping analysis, we also show that the formation of homooligomeric complexes is mediated by two self-interacting domains in the COOH terminus (residues 671 to 816 and 910 to 1098), and that these complexes could probably include more than one type of variant. Taken together, the data reported here suggest that A, F, and AF each play unique roles that are adapted to specific physiological needs, and that the accomplishment of such roles is coordinated through the splicing machinery as well as complex NKCC2-NKCC2 interactions.


Assuntos
Processamento Alternativo , Rim/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Imunofluorescência , Furosemida/administração & dosagem , Furosemida/farmacologia , Humanos , Alça do Néfron/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Oócitos , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Tubarões , Inibidores de Simportadores de Cloreto de Sódio e Potássio/administração & dosagem , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/química , Membro 1 da Família 12 de Carreador de Soluto , Membro 2 da Família 12 de Carreador de Soluto , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Água/administração & dosagem , Xenopus laevis
4.
J Biol Chem ; 279(46): 48449-56, 2004 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-15347682

RESUMO

The first isoform of the Na(+)-K(+)-Cl(-) cotransporter (NKCC1) is of central importance for the control of cellular ion concentration and epithelium-mediated salt secretion. Several studies have established that a change in intracellular [Cl(-)] (Cl(-)(i)) represents a key signaling mechanism by which NKCC1-induced Cl(-) movement is autoregulated and by which Cl(-) entry and exit on opposite sides of polarized cells are coordinated. Although this signaling mechanism is coupled to a pathway that leads to post-translational modification of the carrier, no unifying model currently accounts for the ion dependence of NKCC1 regulation. In this paper, evidence is presented for the first time that hsp90 associates with the cytosolic C terminus of NKCC1, probably when the carrier is predominantly in its unfolded form during early biogenesis. Evidence is also presented that the Cl(-)(i)-dependent regulatory pathway can be activated by a thermal stress but that it is no longer operational if NKCC1-expressing cells are pretreated with geldanamycin, an antibiotic that inhibits hsp90, albeit nonspecifically. Taken together, our data indicate that binding of hsp90 to NKCC1 may be required for Na(+)-K(+)-Cl(-) cotransport to occur at the cell surface and that it could play an important role in ion-dependent signaling mechanisms, insofar as the maneuvers that were used to alter the expression or activity of the chaperone do not exert their main effect by inducing other cellular events such as the unfolded protein response. Further studies will be required to elucidate the functional relevance of this novel interaction.


Assuntos
Cloretos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Animais , Benzoquinonas , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Proteínas de Choque Térmico HSP90/genética , Humanos , Lactamas Macrocíclicas , Chaperonas Moleculares/genética , Ligação Proteica , Conformação Proteica , Quinonas/metabolismo , Radioisótopos de Rubídio/metabolismo , Simportadores de Cloreto de Sódio-Potássio/genética , Membro 2 da Família 12 de Carreador de Soluto , Squalus acanthias , Temperatura , Técnicas do Sistema de Duplo-Híbrido
5.
J Biol Chem ; 279(39): 40769-77, 2004 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-15280386

RESUMO

The first isoform of the Na+-K+-Cl- cotransporter (NKCC1), a widely distributed member of the cation-Cl- cotransporter superfamily, plays key roles in many physiological processes by regulating the ion and water content of animal cells and by sustaining electrolyte secretion across various epithelia. Indirect studies have led to the prediction that NKCC1 operates as a dimer assembled through binding domains that are distal to the amino portion of the carrier. In this study, evidence is presented that NKCC1 possesses self-interacting properties that result in the formation of a large complex between the proximal and the distal segment of the cytosolic C terminus. Elaborate mapping studies of these segments showed that the contact sites are dispersed along the entire C terminus, and they also led to the identification of a critical interacting residue that belongs to a putative forkhead-associated binding domain. In conjunction with previous findings, our results indicate that the uncovered interacting domains are probably a major determinant of the NKCC1 conformational landscape and assembly into a high order structure. A model is proposed in which the carrier could alternate between monomeric and homo-oligomeric units via chemical- or ligand-dependent changes in conformational dynamics.


Assuntos
Simportadores de Cloreto de Sódio-Potássio/química , Sequência de Aminoácidos , Western Blotting , Citosol/metabolismo , Primers do DNA/química , Vetores Genéticos , Glutationa Transferase/metabolismo , Humanos , Íons , Ligantes , Modelos Biológicos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Membro 2 da Família 12 de Carreador de Soluto , Técnicas do Sistema de Duplo-Híbrido , Água/química
6.
J Biol Chem ; 279(7): 5648-54, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14645215

RESUMO

The 2nd transmembrane domain (tm) of the secretory Na(+)-K(+)-Cl(-) cotransporter (NKCC1) and of the kidney-specific isoform (NKCC2) has been shown to play an important role in cation transport. For NKCC2, by way of illustration, alternative splicing of exon 4, a 96-bp sequence from which tm2 is derived, leads to the formation of the NKCC2A and F variants that both exhibit unique affinities for cations. Of interest, the NKCC2 variants also exhibit substantial differences in Cl- affinity as well as in the residue composition of the first intracellular connecting segment (cs1a), which immediately follows tm2 and which too is derived from exon 4. In this study, we have prepared chimeras of the shark NKCC2A and F (saA and saF) to determine whether cs1a could play a role in Cl- transport; here, tm2 or cs1a in saF was replaced by the corresponding domain from saA (generating saA/F or saF/A, respectively). Functional analyses of these chimeras have shown that cs1a-specific residues account for most of the A-F difference in Cl- affinity. For example, Km(Cl-)s were approximately 8 mm for saF/A and saA, and approximately 70 mm for saA/F and saF. Intriguingly, variant residues in cs1a also affected cation transport; here, Km(Na+)s for the chimeras and for saA were all approximately 20 mM, and Km(Rb+) all approximately 2 mM. Regarding tm2, our studies have confirmed its importance in cation transport and have also identified novel properties for this domain. Taken together, our results demonstrate for the first time that an intracellular loop in NKCC contributes to the transport process perhaps by forming a flexible structure that positions itself between membrane spanning domains.


Assuntos
Cloro/química , Simportadores de Cloreto de Sódio-Potássio/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bumetanida/farmacologia , Cátions , Membrana Celular/metabolismo , DNA Complementar/metabolismo , Relação Dose-Resposta a Droga , Éxons , Vetores Genéticos , Íons , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Oócitos/metabolismo , Isoformas de Proteínas , Estrutura Terciária de Proteína , Rubídio/farmacologia , Homologia de Sequência de Aminoácidos , Tubarões , Simportadores de Cloreto de Sódio-Potássio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto , Xenopus , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA