Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neural Eng ; 8(3): 034003, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21543840

RESUMO

Functional electrical stimulation (FES), the coordinated electrical activation of multiple muscles, has been used to restore arm and hand function in people with paralysis. User interfaces for such systems typically derive commands from mechanically unrelated parts of the body with retained volitional control, and are unnatural and unable to simultaneously command the various joints of the arm. Neural interface systems, based on spiking intracortical signals recorded from the arm area of motor cortex, have shown the ability to control computer cursors, robotic arms and individual muscles in intact non-human primates. Such neural interface systems may thus offer a more natural source of commands for restoring dexterous movements via FES. However, the ability to use decoded neural signals to control the complex mechanical dynamics of a reanimated human limb, rather than the kinematics of a computer mouse, has not been demonstrated. This study demonstrates the ability of an individual with long-standing tetraplegia to use cortical neuron recordings to command the real-time movements of a simulated dynamic arm. This virtual arm replicates the dynamics associated with arm mass and muscle contractile properties, as well as those of an FES feedback controller that converts user commands into the required muscle activation patterns. An individual with long-standing tetraplegia was thus able to control a virtual, two-joint, dynamic arm in real time using commands derived from an existing human intracortical interface technology. These results show the feasibility of combining such an intracortical interface with existing FES systems to provide a high-performance, natural system for restoring arm and hand function in individuals with extensive paralysis.


Assuntos
Braço/fisiopatologia , Eletroencefalografia/métodos , Modelos Neurológicos , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Quadriplegia/fisiopatologia , Quadriplegia/reabilitação , Braço/inervação , Biomimética/métodos , Simulação por Computador , Terapia por Estimulação Elétrica/métodos , Potencial Evocado Motor , Humanos , Movimento , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia
2.
J Neural Eng ; 8(2): 025027, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21436513

RESUMO

The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.


Assuntos
Encéfalo/fisiopatologia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Potenciais Evocados , Microeletrodos , Quadriplegia/fisiopatologia , Interface Usuário-Computador , Eletroencefalografia/métodos , Feminino , Humanos , Imaginação , Pessoa de Meia-Idade , Quadriplegia/diagnóstico , Quadriplegia/reabilitação , Resultado do Tratamento
3.
IEEE Trans Neural Syst Rehabil Eng ; 17(4): 339-45, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19502132

RESUMO

We have built a wireless implantable microelectronic device for transmitting cortical signals transcutaneously. The device is aimed at interfacing a cortical microelectrode array to an external computer for neural control applications. Our implantable microsystem enables 16-channel broadband neural recording in a nonhuman primate brain by converting these signals to a digital stream of infrared light pulses for transmission through the skin. The implantable unit employs a flexible polymer substrate onto which we have integrated ultra-low power amplification with analog multiplexing, an analog-to-digital converter, a low power digital controller chip, and infrared telemetry. The scalable 16-channel microsystem can employ any of several modalities of power supply, including radio frequency by induction, or infrared light via photovoltaic conversion. As of the time of this report, the implant has been tested as a subchronic unit in nonhuman primates ( approximately 1 month), yielding robust spike and broadband neural data on all available channels.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Eletroencefalografia/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Telemetria/instrumentação , Interface Usuário-Computador , Potenciais de Ação/fisiologia , Amplificadores Eletrônicos , Animais , Auxiliares de Comunicação para Pessoas com Deficiência , Desenho de Equipamento , Análise de Falha de Equipamento , Masculino , Miniaturização , Rede Nervosa/fisiologia , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Transdutores
5.
Nature ; 402(6762): 610-4, 1999 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-10604466

RESUMO

The hippocampus in the mammalian brain is required for the encoding of current and the retention of past experience. Previous studies have shown that the hippocampus contains neurons that encode information required to perform spatial and nonspatial short-term memory tasks. A more detailed understanding of the functional anatomy of the hippocampus would provide important insight into how such encoding occurs. Here we show that hippocampal neurons in the rat are distributed anatomically in distinct segments along the length of the hippocampus. Each longitudinal segment contains clusters of neurons that become active when the animal performs a task with spatial attributes. Within these same segments are ordered arrangements of neurons that encode the nonspatial aspects of the task appropriate to those spatial features. Thus, anatomical segregation of spatial information, together with the interleaved representation of nonspatial information, represents a structural framework that may help to resolve conflicting views of hippocampal function.


Assuntos
Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Percepção Espacial/fisiologia , Animais , Hipocampo/anatomia & histologia , Hipocampo/citologia , Masculino , Ratos , Ratos Long-Evans
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA