Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Hyg Environ Health ; 260: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772087

RESUMO

OBJECTIVES: In the US, violations of drinking water regulations are highest in lower-income rural areas overall, and particularly in Central Appalachia. However, data on drinking water use, quality, and associated health outcomes in rural Appalachia are limited. We sought to assess public and private drinking water sources and associated risk factors for waterborne pathogen exposures for individuals living in rural regions of Appalachian Virginia. METHODS: We administered surveys and collected tap water, bottled water, and saliva samples in lower-income households in two adjacent rural counties in southwest Virginia (bordering Kentucky and Tennessee). Water samples were tested for pH, temperature, conductivity, total coliforms, E. coli, free chlorine, nitrate, fluoride, heavy metals, and specific pathogen targets. Saliva samples were analyzed for antibody responses to potentially waterborne infections. We also shared water analysis results with households. RESULTS: We enrolled 33 households (83 individuals), 82% (n = 27) with utility-supplied water and 18% with private wells (n = 3) or springs (n = 3). 58% (n = 19) reported household incomes of <$20,000/year. Total coliforms were detected in water samples from 33% (n = 11) of homes, E. coli in 12%, all with wells or springs (n = 4), and Aeromonas, Campylobacter, and Enterobacter in 9%, all spring water (n = 3). Diarrhea was reported for 10% of individuals (n = 8), but was not associated with E. coli detection. 34% (n = 15) of saliva samples had detectable antibody responses for Cryptosporidium spp., C. jejuni, and Hepatitis E. After controlling for covariates and clustering, individuals in households with septic systems and straight pipes had significantly higher likelihoods of antibody detection (risk ratios = 3.28, 95%CI = 1.01-10.65). CONCLUSIONS: To our knowledge, this is the first study to collect and analyze drinking water samples, saliva samples, and reported health outcome data from low-income households in Central Appalachia. Our findings indicate that utility-supplied water in this region was generally safe, and individuals in low-income households without utility-supplied water or sewerage have higher exposures to waterborne pathogens.


Assuntos
Água Potável , Humanos , Água Potável/microbiologia , Virginia/epidemiologia , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Saliva/microbiologia , Microbiologia da Água , Qualidade da Água , Abastecimento de Água , Adulto Jovem , Adolescente , População Rural/estatística & dados numéricos , Idoso , Região dos Apalaches/epidemiologia , Criança , Pobreza
2.
Comput Toxicol ; 262023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37388277

RESUMO

High-throughput screening (HTS) assays for bioactivity in the Tox21 program aim to evaluate an array of different biological targets and pathways, but a significant barrier to interpretation of these data is the lack of high-throughput screening (HTS) assays intended to identify non-specific reactive chemicals. This is an important aspect for prioritising chemicals to test in specific assays, identifying promiscuous chemicals based on their reactivity, as well as addressing hazards such as skin sensitisation which are not necessarily initiated by a receptor-mediated effect but act through a non-specific mechanism. Herein, a fluorescence-based HTS assay that allows the identification of thiol-reactive compounds was used to screen 7,872 unique chemicals in the Tox21 10K chemical library. Active chemicals were compared with profiling outcomes using structural alerts encoding electrophilic information. Random Forest classification models based on chemical fingerprints were developed to predict assay outcomes and evaluated through 10-fold stratified cross validation (CV). The mean CV Balanced Accuracy of the validation set was 0.648. The model developed shows promise as a tool to screen untested chemicals for their potential electrophilic reactivity based solely on chemical structural features.

3.
ACS Omega ; 8(12): 11261-11266, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37008141

RESUMO

Certain e-liquids and aromatic aldehyde flavoring agents were previously identified as inhibitors of microsomal recombinant CYP2A6, the primary nicotine-metabolizing enzyme. However, due to their reactive nature, aldehydes may react with cellular components before reaching CYP2A6 in the endoplasmic reticulum. To determine whether e-liquid flavoring agents inhibited CYP2A6 in a cellular system, we investigated their effects on CYP2A6 using BEAS-2B cells transduced to overexpress CYP2A6. We demonstrated that two e-liquids and three aldehyde flavoring agents (cinnamaldehyde, benzaldehyde, and ethyl vanillin) exhibited dose-dependent inhibition of cellular CYP2A6.

4.
Front Toxicol ; 5: 1134783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082740

RESUMO

Introduction: Analysis of streamlined computational models used to predict androgen disrupting chemicals revealed that assays measuring androgen receptor (AR) cofactor recruitment/dimerization were particularly indispensable to high predictivity, especially for AR antagonists. As the original dimerization assays used to develop the minimal assay models are no longer available, new assays must be established and evaluated as suitable alternatives to assess chemicals beyond the original 1,800+ supported by the current data. Here we present the AR2 assay, which is a stable, cell-based method that uses an enzyme complementation approach. Methods: Bipartite domains of the NanoLuc luciferase enzyme were fused to the human AR to quantitatively measure ligand-dependent AR homodimerization. 128 chemicals with known endocrine activity profiles including 43 AR reference chemicals were screened in agonist and antagonist modes and compared to the legacy assays. Test chemicals were rescreened in both modes using a retrofit method to incorporate robust cytochrome P450 (CYP) metabolism to assess CYP-mediated shifts in bioactivity. Results: The AR2 assay is amenable to high-throughput screening with excellent robust Z'-factors (rZ') for both agonist (0.94) and antagonist (0.85) modes. The AR2 assay successfully classified known agonists (balanced accuracy = 0.92) and antagonists (balanced accuracy = 0.79-0.88) as well as or better than the legacy assays with equal or higher estimated potencies. The subsequent reevaluation of the 128 chemicals tested in the presence of individual human CYP enzymes changed the activity calls for five compounds and shifted the estimated potencies for several others. Discussion: This study shows the AR2 assay is well suited to replace the previous AR dimerization assays in a revised computational model to predict AR bioactivity for parent chemicals and their metabolites.

5.
Redox Biol ; 61: 102646, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36867944

RESUMO

While redox processes play a vital role in maintaining intracellular homeostasis by regulating critical signaling and metabolic pathways, supra-physiological or sustained oxidative stress can lead to adverse responses or cytotoxicity. Inhalation of ambient air pollutants such as particulate matter and secondary organic aerosols (SOA) induces oxidative stress in the respiratory tract through mechanisms that remain poorly understood. We investigated the effect of isoprene hydroxy hydroperoxide (ISOPOOH), an atmospheric oxidation product of vegetation-derived isoprene and a constituent of SOA, on intracellular redox homeostasis in cultured human airway epithelial cells (HAEC). We used high-resolution live cell imaging of HAEC expressing the genetically encoded ratiometric biosensors Grx1-roGFP2, iNAP1, or HyPer, to assess changes in the cytoplasmic ratio of oxidized glutathione to reduced glutathione (GSSG:GSH), and the flux of NADPH and H2O2, respectively. Non-cytotoxic exposure to ISOPOOH resulted in a dose-dependent increase of GSSG:GSH in HAEC that was markedly potentiated by prior glucose deprivation. ISOPOOH-induced increase in glutathione oxidation were accompanied by concomitant decreases in intracellular NADPH. Following ISOPOOH exposure, the introduction of glucose resulted in a rapid restoration of GSH and NADPH, while the glucose analog 2-deoxyglucose resulted in inefficient restoration of baseline GSH and NADPH. To elucidate bioenergetic adaptations involved in combatting ISOPOOH-induced oxidative stress we investigated the regulatory role of glucose-6-phosphate dehydrogenase (G6PD). A knockout of G6PD markedly impaired glucose-mediated recovery of GSSG:GSH but not NADPH. These findings reveal rapid redox adaptations involved in the cellular response to ISOPOOH and provide a live view of the dynamic regulation of redox homeostasis in human airway cells as they are exposed to environmental oxidants.


Assuntos
Glutationa , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/farmacologia , Dissulfeto de Glutationa/metabolismo , Oxirredução , Glutationa/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo , Sistema Respiratório/metabolismo , Glucose/farmacologia , NADP/metabolismo
6.
Redox Biol ; 51: 102281, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306372

RESUMO

Exposure to respirable air particulate matter (PM2.5) in ambient air is associated with morbidity and premature deaths. A major source of PM2.5 is the photooxidation of volatile plant-produced organic compounds such as isoprene. Photochemical oxidation of isoprene leads to the formation of hydroperoxides, environmental oxidants that lead to inflammatory (IL-8) and adaptive (HMOX1) gene expression in human airway epithelial cells (HAEC). To examine the mechanism through which these oxidants alter intracellular redox balance, we used live-cell imaging to monitor the effects of isoprene hydroxyhydroperoxides (ISOPOOH) in HAEC expressing roGFP2, a sensor of the glutathione redox potential (EGSH). Non-cytotoxic exposure of HAEC to ISOPOOH resulted in a rapid and robust increase in EGSH that was independent of the generation of intracellular or extracellular hydrogen peroxide. Our results point to oxidation of GSH through the redox relay initiated by glutathione peroxidase 4, directly by ISOPOOH or indirectly by ISOPOOH-generated lipid hydroperoxides. We did not find evidence for involvement of peroxiredoxin 6. Supplementation of HAEC with polyunsaturated fatty acids enhanced ISOPOOH-induced glutathione oxidation, providing additional evidence that ISOPOOH initiates lipid peroxidation of cellular membranes. These findings demonstrate that ISOPOOH is a potent environmental airborne hydroperoxide with the potential to contribute to oxidative burden of human airway posed by inhalation of secondary organic aerosols.


Assuntos
Estresse Oxidativo , Material Particulado , Butadienos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Hemiterpenos , Humanos , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Oxirredução
7.
Toxicol Sci ; 176(1): 175-192, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374859

RESUMO

Mitochondrial toxicity drives several adverse health outcomes. Current high-throughput screening assays for chemically induced mitochondrial toxicity typically measure changes to mitochondrial structure and may not detect known mitochondrial toxicants. We adapted a respirometric screening assay (RSA) measuring mitochondrial function to screen ToxCast chemicals in HepG2 cells using a tiered testing strategy. Of 1042 chemicals initially screened at a singlemaximal concentration, 243 actives were identified and rescreened at 7 concentrations. Concentration-response data for 3 respiration phases confirmed activity and indicated a mechanism for 193 mitochondrial toxicants: 149 electron transport chain inhibitors (ETCi), 15 uncouplers and 29 adenosine triphosphate synthase inhibitors. Subsequently, an electron flow assay was used to identify the target complex for 84 of the 149 ETCi. Sixty reference chemicals were used to compare the RSA to existing ToxCast and Tox21 mitochondrial toxicity assays. The RSA was most predictive (accuracy = 90%) of mitochondrial toxicity. The Tox21 mitochondrial membrane potential assay was also highly predictive (accuracy = 87%) of bioactivity but underestimated the potency of well-known ETCi and provided no mechanistic information. The tiered RSA approach accurately identifies and characterizes mitochondrial toxicants acting through diverse mechanisms and at a throughput sufficient to screen large chemical inventories. The electron flow assay provides additional confirmation and detailed mechanistic understanding for ETCi, the most common type of mitochondrial toxicants among ToxCast chemicals. The mitochondrial toxicity screening approach described herein may inform hazard assessment and the in vitro bioactive concentrations used to derive relevant doses for screening level chemical assessment using new approach methodologies.


Assuntos
Mitocôndrias/efeitos dos fármacos , Testes de Toxicidade/métodos , Bioensaio , Substâncias Perigosas , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Potencial da Membrana Mitocondrial , Bibliotecas de Moléculas Pequenas
8.
Environ Health Perspect ; 127(9): 95001, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31487205

RESUMO

BACKGROUND: Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES: We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION: There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.


Assuntos
Rotas de Resultados Adversos , Poluentes Ambientais/toxicidade , Glândula Tireoide/efeitos dos fármacos , Animais , Bioensaio , Humanos , Hormônios Tireóideos
9.
Biochim Biophys Acta Gen Subj ; 1863(5): 950-959, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844486

RESUMO

BACKGROUND: Peroxidation of PUFAs by a variety of endogenous and xenobiotic electrophiles is a recognized pathophysiological process that can lead to adverse health effects. Although secondary products generated from peroxidized PUFAs have been relatively well studied, the role of primary lipid hydroperoxides in mediating early intracellular oxidative events is not well understood. METHODS: Live cell imaging was used to monitor changes in glutathione (GSH) oxidation in HAEC expressing the fluorogenic sensor roGFP during exposure to 9-hydroperoxy-10E,12Z-octadecadienoic acid (9-HpODE), a biologically important long chain lipid hydroperoxide, and its secondary product 9-hydroxy-10E,12Z-octadecadienoic acid (9-HODE). The role of hydrogen peroxide (H2O2) was examined by direct measurement and through catalase interventions. shRNA-mediated knockdown of glutathione peroxidase 4 (GPx4) was utilized to determine its involvement in the relay through which 9-HpODE initiates the oxidation of GSH. RESULTS: Exposure to 9-HpODE caused a dose-dependent increase in GSH oxidation in HAEC that was independent of intracellular or extracellular H2O2 production and was exacerbated by NADPH depletion. GPx4 was involved in the initiation of GSH oxidation in HAEC by 9-HpODE, but not that induced by exposure to H2O2 or the low molecular weight alkyl tert-butyl hydroperoxide (TBH). CONCLUSIONS: Long chain lipid hydroperoxides can directly alter cytosolic EGSH independent of secondary lipid oxidation products or H2O2 production. NADPH has a protective role against 9-HpODE induced EGSH changes. GPx4 is involved specifically in the reduction of long-chain lipid hydroperoxides, leading to GSH oxidation. SIGNIFICANCE: These results reveal a previously unrecognized consequence of lipid peroxidation, which may provide insight into disease states involving lipid peroxidation in their pathogenesis.


Assuntos
Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Ácidos Linoleicos Conjugados/metabolismo , Ácidos Linoleicos/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Fosfolipídeo Hidroperóxido Glutationa Peroxidase
10.
Toxicol Sci ; 169(2): 317-332, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835285

RESUMO

The U.S. Environmental Protection Agency (EPA) is faced with the challenge of efficiently and credibly evaluating chemical safety often with limited or no available toxicity data. The expanding number of chemicals found in commerce and the environment, coupled with time and resource requirements for traditional toxicity testing and exposure characterization, continue to underscore the need for new approaches. In 2005, EPA charted a new course to address this challenge by embracing computational toxicology (CompTox) and investing in the technologies and capabilities to push the field forward. The return on this investment has been demonstrated through results and applications across a range of human and environmental health problems, as well as initial application to regulatory decision-making within programs such as the EPA's Endocrine Disruptor Screening Program. The CompTox initiative at EPA is more than a decade old. This manuscript presents a blueprint to guide the strategic and operational direction over the next 5 years. The primary goal is to obtain broader acceptance of the CompTox approaches for application to higher tier regulatory decisions, such as chemical assessments. To achieve this goal, the blueprint expands and refines the use of high-throughput and computational modeling approaches to transform the components in chemical risk assessment, while systematically addressing key challenges that have hindered progress. In addition, the blueprint outlines additional investments in cross-cutting efforts to characterize uncertainty and variability, develop software and information technology tools, provide outreach and training, and establish scientific confidence for application to different public health and environmental regulatory decisions.


Assuntos
Biologia Computacional/métodos , Ensaios de Triagem em Larga Escala/métodos , Toxicologia/métodos , Tomada de Decisões , Humanos , Tecnologia da Informação , Medição de Risco , Toxicocinética , Estados Unidos , United States Environmental Protection Agency
11.
Environ Sci Technol ; 52(9): 5417-5426, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29611697

RESUMO

Thyroid uptake of iodide via the sodium-iodide symporter (NIS) is the first step in the biosynthesis of thyroid hormones that are critical for health and development in humans and wildlife. Despite having long been a known target of endocrine disrupting chemicals such as perchlorate, information regarding NIS inhibition activity is still unavailable for the vast majority of environmental chemicals. This study applied a previously validated high-throughput approach to screen for NIS inhibitors in the ToxCast phase I library, representing 293 important environmental chemicals. Here 310 blinded samples were screened in a tiered-approach using an initial single-concentration (100 µM) radioactive-iodide uptake (RAIU) assay, followed by 169 samples further evaluated in multi-concentration (0.001 µM-100 µM) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings. Representative chemical responses and thyroid effects of high-ranking chemicals are further discussed. This study significantly expands current knowledge of NIS inhibition potential in environmental chemicals and provides critical support to U.S. EPA's Endocrine Disruptor Screening Program (EDSP) initiative to expand coverage of thyroid molecular targets, as well as the development of thyroid adverse outcome pathways (AOPs).


Assuntos
Disruptores Endócrinos , Simportadores , Humanos , Iodetos , Glândula Tireoide
12.
Artigo em Inglês | MEDLINE | ID: mdl-29555536

RESUMO

The US EPA's ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to false positive (chemical is detoxified in vivo) as well as false negative results (chemical is bioactivated in vivo) and thus potential mischaracterization of chemical hazard. To address this challenge, the ten most prevalent human liver cytochrome P450 (CYP) enzymes were introduced into a human cell line (HEK293T) with low endogenous metabolic capacity. The CYP enzymes were introduced via transfection of modified mRNAs as either singlets or as a mixture in relative proportions as expressed in human liver. Initial experiments using luminogenic substrates demonstrate that CYP enzyme activities are significantly increased when co-transfected with an mRNA encoding a CYP accessory protein, P450 oxidoreductase (POR). Transfected HEK293T cells demonstrate the ability to produce predicted metabolites following treatment with well-studied CYP substrates for at least 18 h post-treatment. As a demonstration of how this method can be used to retrofit existing HTS assays, a proof-of-concept screen for cytotoxicity in HEK293T cells was conducted using 56 test compounds. The results demonstrate that the xenobiotic metabolism conferred by transfection of CYP-encoding mRNAs shifts the dose-response relationship for some of the tested chemicals such as aflatoxin B1 (bioactivation) and fenazaquin (detoxification). Overall, transfection of CYP-encoding mRNAs is an effective and portable solution for retrofitting existing cell-based HTS assays with metabolic competence.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ensaios de Triagem em Larga Escala/métodos , RNA Mensageiro/metabolismo , Xenobióticos/metabolismo , Aflatoxina B1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Fígado/enzimologia , Quinazolinas/metabolismo , Transfecção , Xenobióticos/administração & dosagem
13.
Toxicol Appl Pharmacol ; 342: 99-107, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407367

RESUMO

Exposure to ambient particulate matter (PM) causes cardiopulmonary morbidity and mortality through mechanisms that involve oxidative stress. 1,2-naphthoquinone (1,2-NQ) is a ubiquitous component of PM and a potent redox-active electrophile. We previously reported that 1,2-NQ increases mitochondrial H2O2 production through an unidentified mechanism. We sought to characterize the effects of 1,2-NQ exposure on mitochondrial respiration as a source of H2O2 in human airway epithelial cells. We measured the effects of acute exposure to 1,2-NQ on oxygen consumption rate (OCR) in the human bronchial epithelial cell line BEAS-2B and mitochondrial preparations using extracellular flux analysis. Complex-specific assays and NADPH depletion by glucose deprivation distinguished between mitochondrial and non-mitochondrial oxygen utilization. 1,2-NQ exposure of BEAS cells caused a rapid, marked dose-dependent increase in OCR that was independent of mitochondrial respiration, exceeded the OCR observed after mitochondrial uncoupling, and remained sensitive to NADPH depletion, implicating extra-mitochondrial redox cycling processes. Similar effects were observed with the environmentally relevant redox-cycling quinones 1,4-naphthoquinone and 9,10-phenanthrenequinone, but not with quinones that do not redox cycle, such as 1,4-benzoquinone. In mitochondrial preparations, 1,2-NQ caused a decrease in Complex I-linked substrate oxidation, suggesting impairment of pyruvate utilization or transport, a novel mechanism of mitochondrial inhibition by an environmental exposure. This study also highlights the methodological utility and challenges in the use of extracellular flux analysis to elucidate the mechanisms of action of redox-active electrophiles present in ambient air.


Assuntos
Poluentes Atmosféricos/toxicidade , Pulmão/metabolismo , Mitocôndrias/metabolismo , Material Particulado/toxicidade , Mucosa Respiratória/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Peróxido de Hidrogênio/toxicidade , Pulmão/citologia , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/fisiologia , Mucosa Respiratória/efeitos dos fármacos
14.
Chemosphere ; 191: 868-875, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107228

RESUMO

Environmental chemicals can induce thyroid disruption through a number of mechanisms including altered thyroid hormone biosynthesis and transport, as well as activation and inhibition of the thyroid receptor. In the current study six in vitro bioassays indicative of different mechanisms of thyroid disruption and one whole animal in vivo assay were applied to 9 model compounds and 4 different water samples (treated wastewater, surface water, drinking water and ultra-pure lab water; both unspiked and spiked with model compounds) to determine their ability to detect thyroid active compounds. Most assays correctly identified and quantified the model compounds as agonists or antagonists, with the reporter gene assays being the most sensitive. However, the reporter gene assays did not detect significant thyroid activity in any of the water samples, suggesting that activation or inhibition of the thyroid hormone receptor is not a relevant mode of action for thyroid endocrine disruptors in water. The thyroperoxidase (TPO) inhibition assay and transthyretin (TTR) displacement assay (FITC) detected activity in the surface water and treated wastewater samples, but more work is required to assess if this activity is a true measure of thyroid activity or matrix interference. The whole animal Xenopus Embryonic Thyroid Assay (XETA) detected some activity in the unspiked surface water and treated wastewater extracts, but not in unspiked drinking water, and appears to be a suitable assay to detect thyroid activity in environmental waters.


Assuntos
Bioensaio/normas , Disruptores Endócrinos/análise , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/análise , Animais , Autoantígenos , Genes Reporter , Iodeto Peroxidase , Proteínas de Ligação ao Ferro , Glândula Tireoide/efeitos dos fármacos , Xenopus laevis
15.
Toxicol In Vitro ; 40: 66-78, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27979590

RESUMO

The U.S. EPA's Endocrine Disruptor Screening Program aims to use high-throughput assays and computational toxicology models to screen and prioritize chemicals that may disrupt the thyroid signaling pathway. Thyroid hormone biosynthesis requires active iodide uptake mediated by the sodium/iodide symporter (NIS). Monovalent anions, such as the environmental contaminant perchlorate, are competitive inhibitors of NIS, yet limited information exists for more structurally diverse chemicals. A novel cell line expressing human NIS, hNIS-HEK293T-EPA, was used in a radioactive iodide uptake (RAIU) assay to identify inhibitors of NIS-mediated iodide uptake. The RAIU assay was optimized and performance evaluated with 12 reference chemicals comprising known NIS inhibitors and inactive compounds. An additional 39 chemicals including environmental contaminants were evaluated, with 28 inhibiting RAIU over 20% of that observed for solvent controls. Cell viability assays were performed to assess any confounding effects of cytotoxicity. RAIU and cytotoxic responses were used to calculate selectivity scores to group chemicals based on their potential to affect NIS. RAIU IC50 values were also determined for chemicals that displayed concentration-dependent inhibition of RAIU (≥50%) without cytotoxicity. Strong assay performance and highly reproducible results support the utilization of this approach to screen large chemical libraries for inhibitors of NIS-mediated iodide uptake.


Assuntos
Disruptores Endócrinos/toxicidade , Iodetos/metabolismo , Simportadores/antagonistas & inibidores , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , Radioisótopos do Iodo , Simportadores/genética , Glândula Tireoide/metabolismo
16.
Toxicol Sci ; 151(1): 160-80, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26884060

RESUMO

High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use.


Assuntos
Inibidores Enzimáticos/toxicidade , Ensaios de Triagem em Larga Escala , Iodeto Peroxidase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas , Glândula Tireoide/efeitos dos fármacos , Alternativas aos Testes com Animais , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Iodeto Peroxidase/metabolismo , Masculino , Ratos Long-Evans , Medição de Risco , Sus scrofa , Glândula Tireoide/enzimologia
17.
Chem Res Toxicol ; 28(12): 2411-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26605980

RESUMO

Oxidative stress is a commonly cited mechanism of toxicity of environmental agents. Ubiquitous environmental chemicals such as the diesel exhaust component 1,2-naphthoquinone (1,2-NQ) induce oxidative stress by redox cycling, which generates hydrogen peroxide (H2O2). Cysteinyl thiolate residues on regulatory proteins are subjected to oxidative modification by H2O2 in physiological contexts and are also toxicological targets of oxidant stress induced by environmental contaminants. We investigated whether exposure to environmentally relevant concentrations of 1,2-NQ can induce H2O2-dependent oxidation of cysteinyl thiols in regulatory proteins as a readout of oxidant stress in human airway epithelial cells. BEAS-2B cells were exposed to 0-1000 µM 1,2-NQ for 0-30 min, and levels of H2O2 were measured by ratiometric spectrofluorometry of HyPer. H2O2-dependent protein sulfenylation was measured using immunohistochemistry, immunoblotting, and isotopic mass spectrometry. Catalase overexpression was used to investigate the relationship between H2O2 generation and protein sulfenylation in cells exposed to 1,2-NQ. Multiple experimental approaches showed that exposure to 1,2-NQ at concentrations as low as 3 µM induces H2O2-dependent protein sulfenylation in BEAS-2B cells. Moreover, the time of onset and duration of 1,2-NQ-induced sulfenylation of the regulatory proteins GAPDH and PTP1B showed significant differences. Oxidative modification of regulatory cysteinyl thiols in human lung cells exposed to relevant concentrations of an ambient air contaminant represents a novel marker of oxidative environmental stress.


Assuntos
Estresse Oxidativo , Proteínas/química , Ácidos Sulfênicos/química , Células Cultivadas , Humanos , Modelos Biológicos , Naftoquinonas/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Ácidos Sulfênicos/toxicidade
18.
Redox Biol ; 3: 47-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25462065

RESUMO

Human exposure to particulate matter (PM) is a global environmental health concern. Zinc (Zn(2+)) is a ubiquitous respiratory toxicant that has been associated with PM health effects. However, the molecular mechanism of Zn(2+) toxicity is not fully understood. H2O2 and Zn(2+) have been shown to mediate signaling leading to adverse cellular responses in the lung and we have previously demonstrated Zn(2+) to cause cellular H2O2 production. To determine the role of Zn(2+)-induced H2O2 production in the human airway epithelial cell response to Zn(2+) exposure. BEAS-2B cells expressing the redox-sensitive fluorogenic sensors HyPer (H2O2) or roGFP2 (EGSH) in the cytosol or mitochondria were exposed to 50µM Zn(2+) for 5min in the presence of 1µM of the zinc ionophore pyrithione. Intracellular H2O2 levels were modulated using catalase expression either targeted to the cytosol or ectopically to the mitochondria. HO-1 mRNA expression was measured as a downstream marker of response to oxidative stress induced by Zn(2+) exposure. Both cytosolic catalase overexpression and ectopic catalase expression in mitochondria were effective in ablating Zn(2+)-induced elevations in H2O2. Compartment-directed catalase expression blunted Zn(2+)-induced elevations in cytosolic EGSH and the increased expression of HO-1 mRNA levels. Zn(2+) leads to multiple oxidative effects that are exerted through H2O2-dependent and independent mechanisms.


Assuntos
Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Mucosa Respiratória/metabolismo , Zinco/metabolismo , Adaptação Biológica/genética , Catalase/genética , Catalase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Mucosa Respiratória/efeitos dos fármacos , Zinco/farmacologia
19.
Neurotoxicology ; 45: 12-21, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25194297

RESUMO

This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.


Assuntos
Materiais Revestidos Biocompatíveis/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Animais , Linhagem Celular , Neurônios Dopaminérgicos/patologia , Expressão Gênica , Nanopartículas Metálicas/química , Camundongos , Microglia/efeitos dos fármacos , Microglia/patologia , Estresse Oxidativo , Tamanho da Partícula , Ratos
20.
Chem Res Toxicol ; 27(3): 387-99, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24383450

RESUMO

High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein, we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluorescent peroxidase substrate, Amplex UltraRed (AUR), were employed in an end-point assay for comparison to the existing kinetic guaiacol (GUA) oxidation assay. Following optimization of assay metrics, including Z', dynamic range, and activity, using methimazole (MMI), the assay was tested with a 21-chemical training set. The potency of MMI-induced TPO inhibition was greater with AUR compared to GUA. The dynamic range and Z' score with MMI were as follows: 127-fold and 0.62 for the GUA assay, 18-fold and 0.86 for the 96-well AUR assay, and 11.5-fold and 0.93 for the 384-well AUR assay. The 384-well AUR assay drastically reduced animal use, requiring one-tenth of the rat thyroid microsomal protein needed for the GUA 96-well format assay. Fourteen chemicals inhibited TPO, with a relative potency ranking of MMI > ethylene thiourea > 6-propylthiouracil > 2,2',4,4'-tetrahydroxy-benzophenone > 2-mercaptobenzothiazole > 3-amino-1,2,4-triazole > genistein > 4-propoxyphenol > sulfamethazine > daidzein > 4-nonylphenol > triclosan > iopanoic acid > resorcinol. These data demonstrate the capacity of this assay to detect diverse TPO inhibitors. Seven chemicals acted as negatives: 2-hydroxy-4-methoxybenzophenone, dibutylphthalate, diethylhexylphthalate, diethylphthalate, 3,5-dimethylpyrazole-1-methanol, methyl 2-methyl-benzoate, and sodium perchlorate. This assay could be used to screen large numbers of chemicals as an integral component of a tiered TH-disruptor screening approach.


Assuntos
Ensaios Enzimáticos , Inibidores Enzimáticos/metabolismo , Microssomos/enzimologia , Peroxidase/metabolismo , Glândula Tireoide/metabolismo , Animais , Inibidores Enzimáticos/química , Guaiacol/química , Guaiacol/metabolismo , Ensaios de Triagem em Larga Escala , Masculino , Metimazol/química , Metimazol/metabolismo , Oxazinas/química , Oxazinas/metabolismo , Oxirredução , Peroxidase/antagonistas & inibidores , Ligação Proteica , Ratos , Ratos Long-Evans , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA