Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ther Adv Chronic Dis ; 15: 20406223241236257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560720

RESUMO

Introduction: The pathogenesis of post-COVID interstitial lung disease, marked by lung tissue scarring and functional decline, remains largely unknown. Objectives: We aimed to elucidate the temporal cytokine/chemokine changes in bronchoalveolar lavage (BAL) from patients with post-COVID interstitial lung disease to uncover potential immune drivers of pulmonary complications. Design: We evaluated 16 females diagnosed with post-COVID interstitial lung disease, originating from moderate to severe cases during the second epidemic wave in the Autumn of 2020, treated at the Pneumology Department of the Arad County Clinical Hospital, Romania. Their inflammatory response over time was compared to a control group. Methods: A total of 48 BAL samples were collected over three intervals (1, 3, and 6 months) and underwent cytology, gene, and protein expression analyses for pro/anti-inflammatory lung cytokines and chemokines using reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results: One month after infection, there were significant increases in the levels of IL-6 and IL-8. These levels decreased gradually over the course of 6 months but were still higher than those seen in control. Interferon-gamma and tumor necrosis factor alpha exhibited similar patterns. Persistent elevations were found in IL-10, IL-13, and pro-fibrotic M2 macrophages' chemokines (CCL13 and CCL18) for 6 months. Furthermore, pronounced neutrophilia was observed at 1 month post-COVID, highlighting persistent inflammation and lung damage. Neutrophil efferocytosis, aiding inflammation resolution and tissue repair, was evident at the 1-month time interval. A notable time-dependent reduction in CD28 was also noticed. Conclusion: Our research provides insight into the immunological processes that may lead to the fibrotic changes noted in the lungs following COVID-19.


BACKGROUND: Post-COVID lung disease represents a significant health concern that demands comprehensive research. The pathogenesis of post-COVID interstitial lung disease, marked by lung tissue scarring and functional decline, remains largely unknown. METHODS: We evaluated 16 females diagnosed with post-COVID interstitial lung disease, originating from moderate to severe cases during the second epidemic wave in the Autumn 2020, treated at the Pneumology Department of the Arad County Clinical Hospital, Romania. Their inflammatory response over time was compared to a control group. A total of 48 BAL samples were collected over three intervals (1, 3, and 6 months) and underwent cytology, gene, and protein expression analyses for pro/anti-inflammatory lung cytokines and chemokines using RT-PCR and ELISA The interrelationships between the expression levels of various pro-inflammatory and anti-inflammatory cytokines and chemokines by Pearson's correlations was investigated. RESULTS: One month after infection, there were significant increases in the levels of IL-6 and IL-8. These levels decreased gradually over the course of six months but were still higher than those seen in control. IFN-γ and TNF-α exhibited similar patterns. Persistent elevations were found in IL-10, IL-13, and pro-fibrotic M2 macrophages' chemokines (CCL13 and CCL18) for six months. Pronounced neutrophilia was observed at 1 month post-COVID, highlighting persistent inflammation and lung damage. Neutrophils efferocytosis, aiding inflammation resolution and tissue repair, was evident at the 1-month time-interval. A notable time-dependent reduction in CD28 was also noticed. CONCLUSIONS: Our research provides insight into the immunological processes that may lead to the fibrotic changes noted in the lungs following COVID-19.


Dynamic shifts in lung cytokine patterns in post-COVID-19 interstitial lung disease patients: a pilot study The objective of this pilot study was to investigate changes in lung cytokine pro- and anti-inflammatory profiles among patients with interstitial lung disease after COVID-19 infection.

2.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897786

RESUMO

Pulmonary fibrosis is a consequence of the pathological accumulation of extracellular matrix (ECM), which finally leads to lung scarring. Although the pulmonary fibrogenesis is almost known, the last two years of the COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its post effects added new particularities which need to be explored. Many questions remain about how pulmonary fibrotic changes occur within the lungs of COVID-19 patients, and whether the changes will persist long term or are capable of resolving. This review brings together existing knowledge on both COVID-19 and pulmonary fibrosis, starting with the main key players in promoting pulmonary fibrosis, such as alveolar and endothelial cells, fibroblasts, lipofibroblasts, and macrophages. Further, we provide an overview of the main molecular mechanisms driving the fibrotic process in connection with Galactin-1, -3, -8, and -9, together with the currently approved and newly proposed clinical therapeutic solutions given for the treatment of fibrosis, based on their inhibition. The work underlines the particular pathways and processes that may be implicated in pulmonary fibrosis pathogenesis post-SARS-CoV-2 viral infection. The recent data suggest that galectin-1, -3, -8, and -9 could become valuable biomarkers for the diagnosis and prognosis of lung fibrosis post-COVID-19 and promising molecular targets for the development of new and original therapeutic tools to treat the disease.


Assuntos
COVID-19 , Fibrose Pulmonar , COVID-19/complicações , Células Endoteliais/metabolismo , Galectina 1 , Humanos , Pandemias , Fibrose Pulmonar/metabolismo , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA