Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Med Decis Making ; : 272989X241249182, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738534

RESUMO

BACKGROUND: Recommendations regarding personalized lung cancer screening are being informed by natural-history modeling. Therefore, understanding how differences in model assumptions affect model-based personalized screening recommendations is essential. DESIGN: Five Cancer Intervention and Surveillance Modeling Network (CISNET) models were evaluated. Lung cancer incidence, mortality, and stage distributions were compared across 4 theoretical scenarios to assess model assumptions regarding 1) sojourn times, 2) stage-specific sensitivities, and 3) screening-induced lung cancer mortality reductions. Analyses were stratified by sex and smoking behavior. RESULTS: Most cancers had sojourn times <5 y (model range [MR]; lowest to highest value across models: 83.5%-98.7% of cancers). However, cancer aggressiveness still varied across models, as demonstrated by differences in proportions of cancers with sojourn times <2 y (MR: 42.5%-64.6%) and 2 to 4 y (MR: 28.8%-43.6%). Stage-specific sensitivity varied, particularly for stage I (MR: 31.3%-91.5%). Screening reduced stage IV incidence in most models for 1 y postscreening; increased sensitivity prolonged this period to 2 to 5 y. Screening-induced lung cancer mortality reductions among lung cancers detected at screening ranged widely (MR: 14.6%-48.9%), demonstrating variations in modeled treatment effectiveness of screen-detected cases. All models assumed longer sojourn times and greater screening-induced lung cancer mortality reductions for women. Models assuming differences in cancer epidemiology by smoking behaviors assumed shorter sojourn times and lower screening-induced lung cancer mortality reductions for heavy smokers. CONCLUSIONS: Model-based personalized screening recommendations are primarily driven by assumptions regarding sojourn times (favoring longer intervals for groups more likely to develop less aggressive cancers), sensitivity (higher sensitivities favoring longer intervals), and screening-induced mortality reductions (greater reductions favoring shorter intervals). IMPLICATIONS: Models suggest longer screening intervals may be feasible and benefits may be greater for women and light smokers. HIGHLIGHTS: Natural-history models are increasingly used to inform lung cancer screening, but causes for variations between models are difficult to assess.This is the first evaluation of these causes and their impact on personalized screening recommendations through easily interpretable metrics.Models vary regarding sojourn times, stage-specific sensitivities, and screening-induced lung cancer mortality reductions.Model outcomes were similar in predicting greater screening benefits for women and potentially light smokers. Longer screening intervals may be feasible for women and light smokers.

2.
Physiother Theory Pract ; : 1-17, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369771

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) became a significant challenge for the work and personal experience of physiotherapists (PTs). OBJECTIVE: To investigate how the work activities of PTs in a region in Italy have changed, describe the reasons for change, perceived competence, and effectiveness of professional education, and explore their personal experience. METHODS: We adopted a monocentric convergent mixed-methods light-questionnaire variant study. The questionnaire contains both closed-ended and open-ended questions. Quantitative and qualitative data were combined to interpret the results. RESULTS: Among 78 respondents (response rate 24.4%), 87.2% worked during the pandemic, 52.9% treated patients with COVID-19, and 45.6% changed their working activities. Professional competence was perceived as low in intensive and sub-intensive care settings. The major critical aspect of professional education was respiratory rehabilitation. Life-learning education was judged as effective, even if mainly focused on safety. Nine themes emerged from the analysis of the PTs' experiences: 1) Physiotherapy during COVID-19; 2) Fear and negative feelings; 3) Positive aspects; 4) Organization and management; 5) Prevention measures; 6) Patients; 7) Change; 8) Information; and 9) Professional education. CONCLUSIONS: PTs who have direct experience with patients with COVID-19 showed great resilience. They overcame the first phase of disorientation and fear, despite a specific lack of competence in the respiratory field.

3.
Commun Biol ; 4(1): 1022, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471226

RESUMO

Mathematical models have grown in size and complexity becoming often computationally intractable. In sensitivity analysis and optimization phases, critical for tuning, validation and qualification, these models may be run thousands of times. Scientific programming languages popular for prototyping, such as MATLAB and R, can be a bottleneck in terms of performance. Here we show a compiler-based approach, designed to be universal at handling engineering and life sciences modeling styles, that automatically translates models into fast C code. At first QSPcc is demonstrated to be crucial in enabling the research on otherwise intractable Quantitative Systems Pharmacology models, such as in rare Lysosomal Storage Disorders. To demonstrate the full value in seamlessly accelerating, or enabling, the R&D efforts in natural sciences, we then benchmark QSPcc against 8 solutions on 24 real-world projects from different scientific fields. With speed-ups of 22000x peak, and 1605x arithmetic mean, our results show consistent superior performances.


Assuntos
Biologia Computacional/instrumentação , Simulação por Computador , Modelos Biológicos , Linguagens de Programação , Humanos
4.
Biology (Basel) ; 10(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917920

RESUMO

Late 2019 saw the outbreak of COVID-19, a respiratory disease caused by the new coronavirus SARS-CoV-2, which rapidly turned into a pandemic, killing more than 2.77 million people and infecting more than 126 million as of late March 2021. Daily collected data on infection cases and hospitalizations informed decision makers on the ongoing pandemic emergency, enabling the design of diversified countermeasures, from behavioral policies to full lockdowns, to curb the virus spread. In this context, mechanistic models could represent valuable tools to optimize the timing and stringency of interventions, and to reveal non-trivial properties of the pandemic dynamics that could improve the design of suitable guidelines for future epidemics. We performed a retrospective analysis of the Italian epidemic evolution up to mid-December 2020 to gain insight into the main characteristics of the original strain of SARS-CoV-2, prior to the emergence of new mutations and the vaccination campaign. We defined a time-varying optimization procedure to calibrate a refined version of the SIDARTHE (Susceptible, Infected, Diagnosed, Ailing, Recognized, Threatened, Healed, Extinct) model and hence accurately reconstruct the epidemic trajectory. We then derived additional features of the COVID-19 pandemic in Italy not directly retrievable from reported data, such as the estimate of the day zero of infection in late November 2019 and the estimate of the spread of undetected infection. The present analysis contributes to a better understanding of the past pandemic waves, confirming the importance of epidemiological modeling to support an informed policy design against epidemics to come.

5.
Bioinformatics ; 37(9): 1269-1277, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33225350

RESUMO

MOTIVATION: Precision medicine is a promising field that proposes, in contrast to a one-size-fits-all approach, the tailoring of medical decisions, treatments or products. In this context, it is crucial to introduce innovative methods to stratify a population of patients on the basis of an accurate system-level knowledge of the disease. This is particularly important in very challenging conditions, where the use of standard statistical methods can be prevented by poor data availability or by the need of oversimplifying the processes regulating a complex disease. RESULTS: We define an innovative method for phenotype classification that combines experimental data and a mathematical description of the disease biology. The methodology exploits the mathematical model for inferring additional subject features relevant for the classification. Finally, the algorithm identifies the optimal number of clusters and classifies the samples on the basis of a subset of the features estimated during the model fit. We tested the algorithm in two test cases: an in silico case in the context of dyslipidemia, a complex disease for which a large population of patients has been generated, and a clinical test case, in the context of a lysosomal rare disorder, for which the amount of available data was limited. In both the scenarios, our methodology proved to be accurate and robust, and allowed the inference of an additional phenotype division that the experimental data did not show. AVAILABILITY AND IMPLEMENTATION: The code to reproduce the in silico results has been implemented in MATLAB v.2017b and it is available in the Supplementary Material. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Medicina de Precisão , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Humanos , Fenótipo
6.
CPT Pharmacometrics Syst Pharmacol ; 9(7): 374-383, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32558397

RESUMO

Gaucher's disease type 1 (GD1) leads to significant morbidity and mortality through clinical manifestations, such as splenomegaly, hematological complications, and bone disease. Two types of therapies are currently approved for GD1: enzyme replacement therapy (ERT), and substrate reduction therapy (SRT). In this study, we have developed a quantitative systems pharmacology (QSP) model, which recapitulates the effects of eliglustat, the only first-line SRT approved for GD1, on treatment-naïve or patients with ERT-stabilized adult GD1. This multiscale model represents the mechanism of action of eliglustat that leads toward reduction of spleen volume. Model capabilities were illustrated through the application of the model to predict ERT and eliglustat responses in virtual populations of adult patients with GD1, representing patients across a spectrum of disease severity as defined by genotype-phenotype relationships. In summary, the QSP model provides a mechanistic computational platform for predicting treatment response via different modalities within the heterogeneous GD1 patient population.


Assuntos
Doença de Gaucher/tratamento farmacológico , Modelos Biológicos , Pirrolidinas/farmacologia , Biologia de Sistemas , Adulto , Inibidores Enzimáticos/farmacologia , Doença de Gaucher/fisiopatologia , Humanos , Índice de Gravidade de Doença , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia , Resultado do Tratamento
7.
Brief Bioinform ; 21(2): 527-540, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30753281

RESUMO

With the recent rising application of mathematical models in the field of computational systems biology, the interest in sensitivity analysis methods had increased. The stochastic approach, based on chemical master equations, and the deterministic approach, based on ordinary differential equations (ODEs), are the two main approaches for analyzing mathematical models of biochemical systems. In this work, the performance of these approaches to compute sensitivity coefficients is explored in situations where stochastic and deterministic simulation can potentially provide different results (systems with unstable steady states, oscillators with population extinction and bistable systems). We consider two methods in the deterministic approach, namely the direct differential method and the finite difference method, and five methods in the stochastic approach, namely the Girsanov transformation, the independent random number method, the common random number method, the coupled finite difference method and the rejection-based finite difference method. The reviewed methods are compared in terms of sensitivity values and computational time to identify differences in outcome that can highlight conditions in which one approach performs better than the other.


Assuntos
Biologia Computacional/métodos , Processos Estocásticos , Algoritmos , Modelos Teóricos , Biologia de Sistemas
8.
Wiley Interdiscip Rev Syst Biol Med ; 11(6): e1459, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31260191

RESUMO

Nowadays, mathematical modeling is playing a key role in many different research fields. In the context of system biology, mathematical models and their associated computer simulations constitute essential tools of investigation. Among the others, they provide a way to systematically analyze systems perturbations, develop hypotheses to guide the design of new experimental tests, and ultimately assess the suitability of specific molecules as novel therapeutic targets. To these purposes, stochastic simulation algorithms (SSAs) have been introduced for numerically simulating the time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent in such a system. In this work, we review the main SSAs that have been introduced in the context of exact, approximate, and hybrid stochastic simulation. Specifically, we will introduce the direct method (DM), the first reaction method (FRM), the next reaction method (NRM) and the rejection-based SSA (RSSA) in the area of exact stochastic simulation. We will then present the τ-leaping method and the chemical Langevin method in the area of approximate stochastic simulation and an implementation of the hybrid RSSA (HRSSA) in the context of hybrid stochastic-deterministic simulation. Finally, we will consider the model of the sphingolipid metabolism to provide an example of application of SSA to computational system biology by exemplifying how different simulation strategies may unveil different insights into the investigated biological phenomenon. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Analytical and Computational Methods > Computational Methods.


Assuntos
Algoritmos , Biologia de Sistemas/métodos , Animais , Ceramidas/metabolismo , Simulação por Computador , Humanos , Modelos Biológicos , Esfingolipídeos/metabolismo
9.
PLoS One ; 13(2): e0190627, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420588

RESUMO

BACKGROUND: The pathophysiologic processes underlying the regulation of glucose homeostasis are considerably complex at both cellular and systemic level. A comprehensive and structured specification for the several layers of abstraction of glucose metabolism is often elusive, an issue currently solvable with the hierarchical description provided by multi-level models. In this study we propose a multi-level closed-loop model of whole-body glucose homeostasis, coupled with the molecular specifications of the insulin signaling cascade in adipocytes, under the experimental conditions of normal glucose regulation and type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: The ordinary differential equations of the model, describing the dynamics of glucose and key regulatory hormones and their reciprocal interactions among gut, liver, muscle and adipose tissue, were designed for being embedded in a modular, hierarchical structure. The closed-loop model structure allowed self-sustained simulations to represent an ideal in silico subject that adjusts its own metabolism to the fasting and feeding states, depending on the hormonal context and invariant to circadian fluctuations. The cellular level of the model provided a seamless dynamic description of the molecular mechanisms downstream the insulin receptor in the adipocytes by accounting for variations in the surrounding metabolic context. CONCLUSIONS/SIGNIFICANCE: The combination of a multi-level and closed-loop modeling approach provided a fair dynamic description of the core determinants of glucose homeostasis at both cellular and systemic scales. This model architecture is intrinsically open to incorporate supplementary layers of specifications describing further individual components influencing glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Homeostase , Insulina/metabolismo , Modelos Biológicos , Adipócitos/metabolismo , Simulação por Computador , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA