Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336456

RESUMO

Defective hydration of airway surface mucosa is associated with lung infection in cystic fibrosis (CF), partly caused by disruption of the epithelial barrier integrity. Although rehydration of the CF airway surface liquid (ASL) alleviates epithelium vulnerability to infection by junctional protein expression, the mechanisms linking ASL to barrier integrity are unknown. We show here the strong degradation of YAP1 and TAZ proteins in well-polarized CF human airway epithelial cells (HAECs), a process that was prevented by ASL rehydration. Conditional silencing of YAP1 in rehydrated CF HAECs indicated that YAP1 expression was necessary for the maintenance of junctional complexes. A higher plasma membrane tension in CF HAECs reduced endocytosis, concurrent with the maintenance of active ß1-integrin ectopically located at the apical membrane. Pharmacological inhibition of ß1-integrin accumulation restored YAP1 expression in CF HAECs. These results indicate that dehydration of the CF ASL affects epithelial plasma membrane tension, resulting in ectopic activation of a ß1-integrin/YAP1 signaling pathway associated with degradation of junctional proteins.


Assuntos
Fibrose Cística , Epitélio , Transdução de Sinais , Humanos , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Desidratação/metabolismo , Epitélio/metabolismo , Epitélio/patologia , Integrina beta1/metabolismo , Mucosa Respiratória/metabolismo
3.
Nat Commun ; 14(1): 3629, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369702

RESUMO

Bacteriophage therapy has been suggested as an alternative or complementary strategy for the treatment of multidrug resistant (MDR) bacterial infections. Here, we report the favourable clinical evolution of a 41-year-old male patient with a Kartagener syndrome complicated by a life-threatening chronic MDR Pseudomonas aeruginosa infection, who is treated successfully with iterative aerosolized phage treatments specifically directed against the patient's isolate. We follow the longitudinal evolution of both phage and bacterial loads during and after phage administration in respiratory samples. Phage titres in consecutive sputum samples indicate in patient phage replication. Phenotypic analysis and whole genome sequencing of sequential bacterial isolates reveals a clonal, but phenotypically diverse population of hypermutator strains. The MDR phenotype in the collected isolates is multifactorial and mainly due to spontaneous chromosomal mutations. All isolates recovered after phage treatment remain phage susceptible. These results demonstrate that clinically significant improvement is achievable by personalised phage therapy even in the absence of complete eradication of P. aeruginosa lung colonization.


Assuntos
Bacteriófagos , Pneumonia , Infecções por Pseudomonas , Masculino , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Pulmão , Farmacorresistência Bacteriana Múltipla , Infecção Persistente , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Cells ; 11(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563895

RESUMO

Defective hydration of airway surface mucosa is associated with recurrent lung infection in cystic fibrosis (CF), a disease caused by CF transmembrane conductance regulator (CFTR) gene mutations. Whether the composition and/or presence of an airway surface liquid (ASL) is sufficient to prevent infection remains unclear. The susceptibility to infection of polarized wild type and CFTR knockdown (CFTR-KD) airway epithelial cells was determined in the presence or absence of a healthy ASL or physiological saline. CFTR-KD epithelia exhibited strong ASL volume reduction, enhanced susceptibility to infection, and reduced junctional integrity. Interestingly, the presence of an apical physiological saline alleviated disruption of the airway epithelial barrier by stimulating essential junctional protein expression. Thus, rehydrated CFTR-KD cells were protected from infection despite normally intense bacterial growth. This study indicates that an epithelial integrity gatekeeper is modulated by the presence of an apical liquid volume, irrespective of the liquid's composition and of expression of a functional CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Transporte de Íons , Mucosa Respiratória/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA