Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951650

RESUMO

The voltage penalty driving water dissociation (WD) at high current density is a major obstacle in the commercialization of bipolar membrane (BPM) technology for energy devices. Here we show that three materials descriptors, that is, electrical conductivity, microscopic surface area and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimizing mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO2 synthesized at low temperature with high conductivity and hydroxyl coverage. These catalysts exhibit exceptional performance in a BPM electrolyser with low WD overvoltage (ηwd) of 100 ± 20 mV at 1.0 A cm-2. The new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing pathways to commercializing advanced BPMs for a broad array of electrolysis, fuel-cell and electrodialysis applications.

2.
Chem Sci ; 15(5): 1700-1713, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303956

RESUMO

Direct air capture (DAC) removal of anthropogenic CO2 from the atmosphere is imperative to slow the catastrophic effects of global climate change. Numerous materials are being investigated, including various alkaline inorganic metal oxides that form carbonates via DAC. Here we explore metastable early d0 transition metal peroxide molecules that undergo stabilization via multiple routes, including DAC. Specifically here, we describe via experiment and computation the mechanistic conversion of A3V(O2)4 (tetraperoxovanadate, A = K, Rb, Cs) to first a monocarbonate VO(O2)2(CO3)3-, and ultimately HKCO3 plus KVO4. Single crystal X-ray structures of rubidium and cesium tetraperoxovanadate are reported here for the first time, likely prior-challenged by instability. Infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), 51V solid state NMR (nuclear magnetic resonance), tandem thermogravimetry-mass spectrometry (TGA-MS) along with calculations (DFT, density functional theory) all converge on mechanisms of CO2 capture and release that involve the vanadium centre, despite the end product of a 300 days study being bicarbonate and metavanadate. Electron Paramagnetic Resonance (EPR) Spectroscopy along with a wet chemical assay and computational studies evidence the presense of ∼5% adventitous superoxide, likely formed by peroxide reduction of vanadium, which also stabilizes via the reaction with CO2. The alkalis have a profound effect on the stability of the peroxovanadate compounds, stability trending K > Rb > Cs. While this translates to more rapid CO2 capture with heavier alkalis, it does not necessarily lead to capture of more CO2. All compounds capture approximately two equivalents CO2 per vanadium centre. We cannot yet explain the reactivity trend of the alkali peroxovanadates, because any change in speciation of the alkalis from reactions to product is not quantifiable. This study sets the stage for understanding and implementing transition metal peroxide species, including peroxide-functionalized metal oxides, for DAC.

3.
Anal Biochem ; 651: 114727, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35580735

RESUMO

The two constitutional isomers of naphthyl phosphate have different steric properties, analogous to those of phosphotyrosine versus phosphoserine/threonine within a peptide or protein. The ratios of their respective rates of hydrolysis, assayed by measuring rates of inorganic phosphate release, have been used to probe the steric requirements around the active sites of many phosphatases in the literature. We report an NMR-based competitive method that is simpler to execute and has other advantages. It directly yields the ratio of catalytic efficiencies (V/K) of the two substrates, a more biologically relevant comparison than the ratio of initial rates (vo) or maximal rates (Vmax). The competitive method ensures that temperature, pH, enzyme and substrate concentrations, and the presence of any potential inhibitors are identical and will not skew the results. The method can be easily applied at any chosen temperature or pH, and to mutants, or under any other condition that might influence protein conformation and, thus, substrate specificity. It provides a facile screening method to select conditions for a detailed phosphopeptide screen to provide deeper insight into substrate preference.


Assuntos
Compostos Organofosforados , Proteínas Tirosina Fosfatases , Cinética , Naftalenos , Compostos Organofosforados/química , Fosfopeptídeos , Proteínas Tirosina Fosfatases/metabolismo , Especificidade por Substrato
4.
Ecol Evol ; 11(2): 1013-1022, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33520183

RESUMO

Cane toads are highly toxic bufonids invasive in several locations throughout the world. Although physiological changes and effects on native predators for Australian populations have been well documented, Florida populations have received little attention. Cane toads were collected from populations spanning the invaded range in Florida to assess relative toxicity, through measuring morphological changes to parotoid glands, likelihood of secretion, and the marinobufagenin (MBG) content of secretion. We found that residual body indices increased in individuals from higher latitude populations, and relative parotoid gland size increased with increasing toad size. There was no effect of latitude on the allometric relationship between gland size and toad size. We observed an increase in likelihood of secretion by cane toads in the field with increasing latitude. Individuals from southern and northern populations did not vary significantly in the quantity of MBG contained in their secretion. Laboratory-acclimated cane toads receiving injections of epinephrine were more likely to secrete poison with increasing dose, although there was no difference in likelihood of secretion between southern and northern populations. This suggests that differences between populations in the quantities of epinephrine released in the field, due to altered hypothalamic sensitivity upon disturbance, may be responsible for the latitudinal effects on poison secretion. Our results suggest that altered pressures from northward establishment in Florida have affected sympathetic sensitivity and defensive mechanisms of cane toads, potentially affecting risk to native predators.

5.
J Dairy Sci ; 104(2): 1412-1423, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33189284

RESUMO

In this study dairy phospholipid (PL) gels were made using 3 different concentrations of PL (15%, 30%, and 45%) and soybean oil to determine the gel-forming ability and functional traits that dairy PL have. After 24 h of storage the visual stability, crystal morphology, solid fat content, melting behavior, viscosity, and oil binding capacity of the gels were evaluated. All samples showed visual stability, whereas polarized light microscopy showed that high concentrations of PL reduced PL mobility, preventing tubular micelles from forming at high concentrations of PL (45%). Solid fat content increased with an increase in PL concentration. The melting enthalpy increased as the concentration of PL increased. The viscosity was assessed at 0.01, 0.1, and 1.0 1/s shear rates. A significant difference was observed between the 45% PL samples and the other samples at low and intermediate shear, but at high shear levels, a significant difference was only seen between the 15% PL sample and the other samples. The oil binding capacity showed a significant difference between the 45% PL sample and the other 2 samples. This study shows that dairy PL can be added to a vegetable oil to produce semi-solid material with appropriate functional properties.


Assuntos
Laticínios/análise , Géis/química , Fosfolipídeos/química , Óleo de Soja/química , Animais , Fenômenos Químicos , Cristalização , Gorduras/análise , Fosfolipídeos/análise , Termodinâmica , Viscosidade
6.
PLoS One ; 15(12): e0244654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382809

RESUMO

BACKGROUND: Saponins are secondary metabolites from plants added to shampoos and beverages to make them foam, and the sapogenins released from them upon acid hydrolysis are commonly used as starting materials for steroidal drugs. However, current methods embed the saponin in a thick "gum" material consisting of multiple impurities. This gum limits access to the saponin, reducing the efficiency of hydrolysis and requiring large amounts of heat, organic solvents and effort to recover the sapogenin. For centuries, herbalists have been making tinctures by soaking plant materials at room temperature, in mixtures of alcohol and water. Many herbal tinctures contain saponins floating freely in solution, gum free. The saponin from sarsaparilla (Smilax spp), sarsasaponin, yields the sapogenin, sarsasapogenin, upon acid hydrolysis. The retail price of sarsasapogenin is very high but would be lower if the "gum problem" could be avoided. MATERIALS AND METHODS: We incubated sarsaparilla tincture under different conditions of temperature, acidity and duration then used quantitative nuclear magnetic resonance (qNMR) to measure the amount of sarsasapogenin produced by hydrolysis as well as the amount of its epimer, smilagenin. RESULTS AND DISCUSSION: Most, if not all the sarsasaponin in sarsaparilla root powder is extracted into a solution of 45% ethanol (55% water) at room temperature and stays suspended without formation of any particles (gum). Acid hydrolysis of the saponin in this solution is very efficient, approaching 100%. The sarsasapogenin released by hydrolysis and the smilagenin produced by its epimerisation, migrate into the chloroform phase. CONCLUSION: Sarsaparilla saponin diffuses into and disperses in a solution of alcohol:water (45:55) at room temperature. Hydrolysis of saponins in tincture provides a simple, inexpensive and environmentally friendly alternative.


Assuntos
Saponinas/química , Smilax/química , Ácidos/química , Hidrólise , Raízes de Plantas/química , Sapogeninas/química , Saponinas/isolamento & purificação , Metabolismo Secundário
7.
J Med Chem ; 62(21): 9990-9995, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31577143

RESUMO

Carbon monoxide (CO) is a gasotransmitter produced in humans. An essential unanswered question in the design of carbon monoxide releasing molecules (CORMs) is whether the delivery molecule should be localized extra- or intracellularly to produce desired biological effects. Herein we show that extracellular CO release is less toxic and is sufficient to produce an anti-inflammatory effect similar to that of intracellular CO release at nanomolar concentrations. This information is valuable for the design of CORMs.


Assuntos
Monóxido de Carbono/metabolismo , Espaço Extracelular/metabolismo , Gasotransmissores/metabolismo , Espaço Intracelular/metabolismo , Animais , Difusão , Camundongos , Microscopia de Fluorescência , Células RAW 264.7
8.
Chem Commun (Camb) ; 55(76): 11430-11433, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31482874

RESUMO

This report describes the implementation of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dye into the ligand framework of a Rh-based catalyst. The redox-active nature of the BODIPY dye is utilized to generate a catalyst that is capable of exhibiting redox-switchable catalytic behavior for the hydroboration of alkenes through a BODIPY-based reduction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA