Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Ecol Evol ; 37(9): 749-758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577616

RESUMO

Grasses fuel most fires on Earth and strongly influence local fire behaviour through traits that determine how flammable they are. Therefore, grass communities that differ in their species and trait compositions give rise to significant spatial variation in savanna fire regimes across the world, which cannot be otherwise explained. Likewise, fire regimes are continuously modified by alterations to savanna grass community traits, through species introductions and climatic changes. However, current representation of grassy fuels in global fire models misses important variation and therefore limits predictive power. The inclusion of grass trait diversity in models, using remotely sensed trait proxies, for example, will greatly improve our ability to understand and project savanna fires and their roles in the Earth system.


Assuntos
Incêndios , Poaceae , Ecossistema , Pradaria , Árvores
2.
New Phytol ; 235(3): 1260-1271, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35488493

RESUMO

Plant plastic responses are critical to the adaptation and survival of species under climate change, but whether they are constrained by evolutionary history (phylogeny) is largely unclear. Plant leaf traits are key in determining plants' performance in different environments, and if these traits and their variation are phylogenetically dependent, predictions could be made to identify species vulnerable to climate change. We compiled data on three leaf traits (photosynthetic rate, specific leaf area, and leaf nitrogen content) and their variation under four environmental change scenarios (warming, drought, elevated CO2 , or nitrogen addition) for 434 species, from 210 manipulation experiments. We found phylogenetic signal in the three traits but not in their variation under the four scenarios. This indicates that closely related species show similar traits but that their plastic responses could not be predicted from species relatedness under environmental change. Meanwhile, phylogeny weakened the slopes but did not change the directions of conventional pairwise trait relationships, suggesting that co-evolved leaf trait pairs have consistent responses under contrasting environmental conditions. Phylogeny can identify lineages rich in species showing similar traits and predict their relationships under climate change, but the degree of plant phenotypic variation does not vary consistently across evolutionary clades.


Assuntos
Mudança Climática , Plantas , Evolução Biológica , Nitrogênio , Filogenia , Folhas de Planta , Plantas/genética
3.
New Phytol ; 230(2): 832-844, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33155275

RESUMO

Plant populations persist under recurrent fire via resprouting from surviving tissues (resprouters) or seedling recruitment (seeders). Woody species are inherently slow maturing, meaning that seeders are confined to infrequent fire regimes. However, for grasses, which mature faster, the relationships between persistence strategy and fire regime remain unknown. Globally, we analysed associations between fire regimes experienced by hundreds of grass species and their persistence strategy, within a phylogenetic context. We also tested whether persistence strategies are associated with morphological and physiological traits. Resprouters were associated with less frequent fire than seeders. Whilst modal fire frequencies were similar (fire return interval of 4-6 yr), seeders were restricted to regions with more frequent fire than resprouters, suggesting that greater competition with long-lived resprouters restricts seeder recruitment and survival when fire is rare. Resprouting was associated with lower leaf N, higher C:N ratios and the presence of belowground buds, but was unrelated to photosynthetic pathway. Differences between the life histories of grasses and woody species led to a contrasting prevalence of seeders and resprouters in relation to fire frequency. Rapid sexual maturation in grasses means that seeder distributions, relative to fire regime, are determined by competitive ability and recruitment, rather than time to reproductive maturity.


Assuntos
Incêndios , Poaceae , Ecossistema , Filogenia , Folhas de Planta , Plantas
4.
Glob Chang Biol ; 26(12): 7128-7143, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32897634

RESUMO

The uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regard to grasses and grasslands. Grasses are well known for their high silica content, a trait which has important implications ranging from defense to global Si cycling. Here, we test the classic hypothesis that C4 grasses evolved stronger mechanical defenses than C3 grasses through increased phytolith deposition, in response to extensive ungulate herbivory ("C4 -grazer hypothesis"). Despite mixed support, this hypothesis has received broad attention, even outside the realm of plant biology. Because C3 and C4 grasses typically dominate in different climates, with the latter more abundant in hot, dry regions, we also investigated the effects of water availability and temperature on Si deposition. We compiled a large dataset of grasses grown under controlled environmental conditions. Using phylogenetically informed generalized linear mixed models and character evolution models, we evaluated whether photosynthetic pathway or growth condition influenced Si concentration. We found that C4 grasses did not show consistently elevated Si concentrations compared with C3 grasses. High temperature treatments were associated with increased concentration, especially in taxa adapted to warm regions. Although the effect was less pronounced, reduced water treatment also promoted silica deposition, with slightly stronger response in dry habitat species. The evidence presented here rejects the "C4 -grazer hypothesis." Instead, we propose that the tendency for C4 grasses to outcompete C3 species under hot, dry conditions explains previous observations supporting this hypothesis. These findings also suggest a mechanism via which anthropogenic climate change may influence silica deposition in grasses and, by extension, alter the important ecological and geochemical processes it affects.


Assuntos
Poaceae , Silício , Mudança Climática , Fotossíntese , Temperatura
5.
Proc Biol Sci ; 286(1909): 20191315, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31431130

RESUMO

Coping with temporal variation in fire requires plants to have plasticity in traits that promote persistence, but how plastic responses to current conditions are affected by past fire exposure remains unknown. We investigate phenotypic divergence between populations of four resprouting grasses exposed to differing experimental fire regimes (annually burnt or unburnt for greater than 35 years) and test whether divergence persists after plants are grown in a common environment for 1 year. Traits relating to flowering and biomass allocation were measured before plants were experimentally burnt, and their regrowth was tracked. Genetic differentiation between populations was investigated for a subset of individuals. Historic fire frequency influenced traits relating to flowering and below-ground investment. Previously burnt plants produced more inflorescences and invested proportionally more biomass below ground, suggesting a greater capacity for recruitment and resprouting than unburnt individuals. Tiller-scale regrowth rate did not differ between treatments, but prior fire exposure enhanced total regrown biomass in two species. We found no consistent genetic differences between populations suggesting trait differences arose from developmental plasticity. Grass development is influenced by prior fire exposure, independent of current environmental conditions. This priming response to fire, resulting in adaptive trait changes, may produce communities more resistant to future fire regime changes.


Assuntos
Incêndios , Fenômenos Fisiológicos Vegetais , Poaceae/fisiologia , Ecossistema , Raízes de Plantas , Plantas , Sementes
6.
J Ecol ; 104(1): 138-148, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26877549

RESUMO

Tropical grasses fuel the majority of fires on Earth. In fire-prone landscapes, enhanced flammability may be adaptive for grasses via the maintenance of an open canopy and an increase in spatiotemporal opportunities for recruitment and regeneration. In addition, by burning intensely but briefly, high flammability may protect resprouting buds from lethal temperatures. Despite these potential benefits of high flammability to fire-prone grasses, variation in flammability among grass species, and how trait differences underpin this variation, remains unknown.By burning leaves and plant parts, we experimentally determined how five plant traits (biomass quantity, biomass density, biomass moisture content, leaf surface-area-to-volume ratio and leaf effective heat of combustion) combined to determine the three components of flammability (ignitability, sustainability and combustibility) at the leaf and plant scales in 25 grass species of fire-prone South African grasslands at a time of peak fire occurrence. The influence of evolutionary history on flammability was assessed based on a phylogeny built here for the study species.Grass species differed significantly in all components of flammability. Accounting for evolutionary history helped to explain patterns in leaf-scale combustibility and sustainability. The five measured plant traits predicted components of flammability, particularly leaf ignitability and plant combustibility in which 70% and 58% of variation, respectively, could be explained by a combination of the traits. Total above-ground biomass was a key driver of combustibility and sustainability with high biomass species burning more intensely and for longer, and producing the highest predicted fire spread rates. Moisture content was the main influence on ignitability, where species with higher moisture contents took longer to ignite and once alight burnt at a slower rate. Biomass density, leaf surface-area-to-volume ratio and leaf effective heat of combustion were weaker predictors of flammability components. Synthesis. We demonstrate that grass flammability is predicted from easily measurable plant functional traits and is influenced by evolutionary history with some components showing phylogenetic signal. Grasses are not homogenous fuels to fire. Rather, species differ in functional traits that in turn demonstrably influence flammability. This diversity is consistent with the idea that flammability may be an adaptive trait for grasses of fire-prone ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA