Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 34(4): 880-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25524181

RESUMO

The manufacturing of explosives and their loading, assembling, and packing into munitions for use in testing on training sites or battlefields has resulted in contamination of terrestrial and aquatic sites that may pose risk to populations of sensitive species. The bioaccumulative potential of the conventional explosives 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and of the insensitive munitions (i.e., less shock sensitive) compound 2,4-dinitroanisole (DNAN) were assessed using the Northern leopard frog, Rana pipiens. Trinitrotoluene entering the organism was readily biotransformed to aminodinitrotoluenes, whereas no transformation products were measured for RDX or DNAN. Uptake clearance rates were relatively slow and similar among compounds (1.32-2.19 L kg(-1) h(-1) ). Upon transfer to uncontaminated water, elimination rate was very fast, resulting in the prediction of fast time to approach steady state (5 h or less) and short elimination half-lives (1.2 h or less). A preliminary bioconcentration factor of 0.25 L kg(-1) was determined for the insensitive munitions compound 3-nitro-1,2,4-trizole-5-one (NTO) indicating negligible bioaccumulative potential. Because of the rapid elimination rate for explosives, tadpoles inhabiting contaminated areas are expected to experience harmful effects only if under constant exposure conditions given that body burdens can rapidly depurate preventing tissue concentrations from persisting at levels that may cause detrimental biological effects.


Assuntos
Anisóis/metabolismo , Substâncias Explosivas/metabolismo , Nitrocompostos/metabolismo , Triazinas/metabolismo , Triazóis/metabolismo , Trinitrotolueno/metabolismo , Animais , Anisóis/farmacocinética , Carga Corporal (Radioterapia) , Substâncias Explosivas/farmacocinética , Meia-Vida , Larva , Nitrocompostos/farmacocinética , Rana pipiens , Triazinas/farmacocinética , Triazóis/farmacocinética , Trinitrotolueno/farmacocinética , Água/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Technol ; 47(16): 9424-33, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23898970

RESUMO

A hormetic response is characterized by an opposite effect in small and large doses of chemical exposure, often resulting in seemingly beneficial effects at low doses. Here, we examined the potential mechanisms underlying the hormetic response of Daphnia magna to the energetic trinitrotoluene (TNT). Daphnia magna were exposed to TNT for 21 days, and a significant increase in adult length and number of neonates was identified at low concentrations (0.002-0.22 mg/L TNT), while toxic effects were identified at high concentrations (0.97 mg/L TNT and above). Microarray analysis of D. magna exposed to 0.004, 0.12, and 1.85 mg/L TNT identified effects on lipid metabolism as a potential mechanism underlying hormetic effects. Lipidomic analysis of exposed D. magna supported the hypothesis that TNT exposure affected lipid and fatty acid metabolism, showing that hormetic effects could be related to changes in polyunsaturated fatty acids known to be involved in Daphnia growth and reproduction. Our results show that Daphnia exposed to low levels of TNT presented hormetic growth and reproduction enhancement, while higher TNT concentrations had an opposite effect. Our results also show how a systems approach can help elucidate potential mechanisms of action and adverse outcomes.


Assuntos
Daphnia/efeitos dos fármacos , Hormese , Trinitrotolueno/administração & dosagem , Animais , Tamanho Corporal/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Transcriptoma
3.
Environ Pollut ; 159(5): 1363-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21295392

RESUMO

To determine if trinitrotoluene (TNT) forms nonextractable residues in earthworms and to measure the relative degree of accumulation as compared to TNT and its deaminated metabolites, Eisenia fetida was exposed to 14C-TNT using dermal contact to filter paper or exposure to soil. Nonextractable residues made up 32-68% of total body burden depending on exposure media and depuration time. Parent TNT accounted for less than 3% of radioactivity, while ADNTs accounted for 7-38%. Elimination half-lives were 61-120 h for TNT, ADNTs, and DANTs, which was significantly lower than the half-lives found for nonextractable residues, 201-240 h. However, over 80% of the nonextractable residue was solubilized using weak acid (pH 2). Based on our findings that TNT accumulation occurs primarily as nonextractable residues, which have a longer half-life, and that nonextractable residues can be solubilized, we propose that nonextractable residues could be used as a selective biomarker for assessing TNT contamination.


Assuntos
Oligoquetos/metabolismo , Trinitrotolueno/metabolismo , Compostos de Anilina/análise , Animais , Radioisótopos de Carbono/análise , Tolueno/análogos & derivados , Trinitrotolueno/análise
4.
Ecotoxicol Environ Saf ; 70(1): 38-46, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-17980428

RESUMO

Toxicological data on the effects of the explosive, 2,4,6-trinitrotoluene (TNT), and its degradation products suggests an unpredictable toxicological response in aquatic organisms. Several studies suggest TNT becomes more toxic as it degrades while others suggest TNT becomes less toxic. This study focused on the toxicity of TNT and several degradation products as well as the role of oxidative metabolism in the toxicity of TNT. The aquatic invertebrate Hyalella azteca was used to evaluate the toxicity of TNT and four of its degradation products. The most reduced degradation product, 2,4-diamino, 6-nitrotoluene (2,4-DANT) was the most toxic to H. azteca. However, 2,4-DANT was only a minor metabolite in H. azteca. The influence of metabolism on the toxicokinetics of TNT was assessed indirectly through the use of a CYP450 inducer and inhibitor. Treatment of organisms with beta-napthoflavone (BNF), a CYP450 inducer, increased the toxicity of TNT and increased the rate of elimination and metabolism of TNT. Similar to BNF, organisms treated with clotrimazole (CTZ), a CYP450 inhibitor, resulted in increased toxicity and TNT metabolism. It is likely the ability to metabolize or bioactivate TNT to a more reactive intermediate plays a significant role in the sensitivity of organisms to TNT.


Assuntos
Anfípodes/efeitos dos fármacos , Derivados de Benzeno/toxicidade , Substâncias Explosivas/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/metabolismo , Animais , Derivados de Benzeno/farmacocinética , Clotrimazol/farmacologia , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Substâncias Explosivas/farmacocinética , Poluentes Químicos da Água/farmacocinética , beta-Naftoflavona/farmacologia
5.
Environ Toxicol Chem ; 25(12): 3253-60, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17220096

RESUMO

Few studies have determined the toxicity and bioaccumulation potential of explosive compounds in freshwater fish. In the present study, fathead minnow (Pimephales promelas) were exposed to a range of 2,4,6-trinitrotoluene (TNT) concentrations (0.44-44 micromol/L [0.1-10 mg/L] and 4.4-22.0 micromol/L [1.0-5.0 mg/L] in 4- and 10-d experiments, respectively). Median lethal concentrations of 11.93 micromol/L (2.7 mg/L; 95% confidence limit [CL], 10.29-13.83 micromol/L) and 9.68 micromol/L (2.20 mg/L; 95% CL, 9.17-10.22 micromol/L) were calculated in the 4- and 10-d experiments, respectively, and median lethal body residue of 101.0 micromol/kg (95% CL, 86.0-118.7 micromol/kg) was calculated in 4-d experiments. To study bioaccumulation, fish were exposed to 4.4 micromol/L (1 mg/L) of TNT for 12 h. Rapid bioaccumulation of TNT occurred within the first 10 min of exposure (ku = 30.4 L/kg/ h). Elimination of sigmaTNT (molar sum of TNT and degradation products 2- and 4-aminodinitrotoluenes) was fast, with an elimination rate (ke) of 2.24/h and a short half-life (0.31 h). The bioconcentration factors determined using 6-h mean tissue and water concentrations of sigmaTNT were 8.40 and 4.68 L/kg for the uptake experiment and the uptake portion of the elimination experiments, respectively. To determine the target organ for TNT in fish, juvenile fathead minnow were exposed to 2.2 micromol/L (0.5 mg/L) of [14C]TNT for 10 d. Radiolabeled compounds primarily bioaccumulated in the visceral tissues and spleen in comparison to gill, brain, muscle, and remainder tissue groups. The present study demonstrates the low bioaccumulation potential and rapid uptake of TNT in the fathead minnow.


Assuntos
Cyprinidae/metabolismo , Trinitrotolueno/metabolismo , Trinitrotolueno/toxicidade , Animais , Cinética , Especificidade de Órgãos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA