RESUMO
We have developed a method, which we have named hybridization-banding, to identify simultaneously all chromosomes in a mouse metaphase spread. The method uses a combination of hybridization probes labeled with a single fluor to yield a simple, unique, readily identifiable hybridization pattern on each chromosome. The method is superior to Giemsa- or fluorescence-based banding methods for chromosome identification because the hybridization patterns are simpler and easier to identify, and unique patterns can be designed at will for each chromosome. Analysis can be performed with a standard fluorescence microscope, and images can be recorded on film with an ordinary 35-mm camera, making the method useful to many investigators. The method can also be applied to any species for which chromosomes and probes can be prepared.
Assuntos
Bandeamento Cromossômico/métodos , Cromossomos/genética , Hibridização In Situ/métodos , Cariotipagem/métodos , Animais , Cromossomos Artificiais de Levedura/genética , Sondas de DNA , Biblioteca Gênica , Genoma , Indóis , Metáfase , Camundongos , Microscopia de Fluorescência , Sensibilidade e EspecificidadeRESUMO
Analysis of 122 spontaneous large and small colony mutants derived from L5178Y tk +/- mouse lymphoma cells at 28 heteromorphic microsatellite loci on chromosome 11 showed that extensive loss of heterozygosity (LOH) is common in both large colony and small colony mutants, eliminating most chromosome 11 loci as candidates for a putative growth control locus. These results, in conjunction with historical cytogenetic data, suggest that a putative growth control locus lies distal to the thymidine kinase (Tk1) gene, near the telomere. Thirty seven mutants were hybridized with a chromosome 11-specific whole chromosome painting probe for analysis of rearrangements. Generally, painting confirmed earlier observations that large colony mutants are karyotypically normal, whereas small colony mutants frequently have detectable rearrangements. A point probe distal to Tk1 revealed no evidence of chromosome breakage in small colony mutants that appeared normal on whole 11 painting and had no LOH. Therefore, the molecular difference between large and small colony mutants remains unknown. Models to explain large and small colony mutants consistent with our findings are presented, including loss of a putative growth control gene, differential mechanisms of chromosome breakage/repair and second site mutations as explanations for small colony mutants. Painting revealed translocations and aneuploidy and showed that non-disjunction was not a common explanation for complete LOH. The most common finding was that large regions of LOH do not result from deletions, demonstrating that these cells can detect recombination events as well as previously observed chromosomal rearrangements, deletions and point mutations.
Assuntos
Aberrações Cromossômicas , Leucemia L5178/genética , Proteínas de Neoplasias/genética , Timidina Quinase/genética , Aneuploidia , Animais , Divisão Celular , Coloração Cromossômica , Células Clonais/enzimologia , Células Clonais/ultraestrutura , Perda de Heterozigosidade , Camundongos , Mutação , Recombinação Genética , Deleção de SequênciaRESUMO
We have established a method for preparing cDNA sublibraries enriched in sequences from specific chromosome regions, called selection of hybrids by affinity capture (SHAC). This procedure can be described in two stages. In the first stage, a particular chromosome region, in this study mouse chromosome 11, was microdissected, followed by PCR amplification with a universal degenerate primer. This material is referred to as the "target" DNA. In the second stage, a mouse liver cDNA library with unique linker-adapter ends, referred to as the "source" cDNA, was hybridized to the biotin-labeled target DNA prepared during the first stage. The resulting DNA duplexes were captured by streptavidin-coated magnetic beads. The cDNAs were released from their biotin-labeled target homologs by alkaline denaturation and recovered by PCR amplification. These cDNAs were referred to as the SHACcDNAs. Specificity of the SHACcDNA to chromosome 11 was verified by FISH analysis. To examine representation of the SHACcDNA, we confirmed the presence of seven genes or single-copy DNA segments known to be localized on mouse chromosome 11, using a dot blot assay. In addition, a second round of SHAC was performed to achieve even higher specificity for the resulting chromosome 11 SHACcDNA. The SHAC technology should facilitate construction of cytogenetically defined cDNA libraries and should assist in the fields of gene discovery and genome mapping.
Assuntos
Mapeamento Cromossômico , Animais , Sequência de Bases , Primers do DNA , DNA Complementar , Células Híbridas , Hibridização in Situ Fluorescente , Camundongos , Dados de Sequência MolecularRESUMO
Pyridoxineless mutants of Escherichia coli B stopped incorporation of nucleosides into trichloroacetic acid-insoluble material about 40 to 60 min after pyridoxine starvation was initiated, whereas incorporation of amino acids (measured the same way) slowed but did not stop for several hours. Both these incorporations and cell density were increased most effectively by the presence of either threonine or isoleucine. Arginine, glutamate, histidine, methionine, tryptophan, and tyrosine also caused significant but less dramatic increases. Inducibility of beta-galactosidase continued beyond the point where nucleic acids appeared to stop their synthesis, suggesting that messenger ribonucleic acid synthesis continued beyond ribosomal ribonucleic acid synthesis. This inducibility was also increased by isoleucine and threonine. The overall results suggest that the threonine-isoleucine biosynthetic pathway is the most sensitive to starvation for pyridoxine.