Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2307718120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788310

RESUMO

Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.


Assuntos
Fímbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fímbrias Bacterianas/metabolismo , Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Fenômenos Físicos , Proteínas de Fímbrias/metabolismo
2.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37215027

RESUMO

Fluid flow is thought to prevent bacterial adhesion, but some bacteria use adhesins with catch bond properties to enhance adhesion under high shear forces. However, many studies on bacterial adhesion either neglect the influence of shear force or use shear forces that are not typically found in natural systems. In this study, we use microfluidics and single-cell imaging to examine how the human pathogen Pseudomonas aeruginosa interacts with surfaces when exposed to shear forces typically found in the human body (0.1 pN to 10 pN). Through cell tracking, we demonstrate that the angle between the cell and the surface predicts if a cell will depart the surface. We discover that at lower shear forces, type IV pilus retraction tilts cells away from the surface, promoting surface departure. Conversely, we show that higher shear forces counterintuitively enhance adhesion by counteracting type IV pilus retraction-dependent cell tilting. Thus, our results reveal that P. aeruginosa exhibits behavior reminiscent of a catch bond, without having a specific adhesin that is enhanced by force. Instead, P. aeruginosa couples type IV pilus dynamics and cell geometry to tune adhesion to its mechanical environment, which likely provides a benefit in dynamic host environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA