Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 929478, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618616

RESUMO

Bacterial diseases cause severe losses in the production and revenue of many fruit crops, including citrus and apple. Huanglongbing (HLB) in citrus and fire blight in apple are two deadly diseases without any cure. In this article, we introduce a novel therapy for HLB and fire blight by enhancing the innate immunity of the host plants. Specifically, we constructed in silico a library of chimeras containing two different host peptides with observed or predicted antibacterial activity. Subsequently, we performed bactericidal and toxicity tests in vitro to select a few non-toxic chimeras with high antibacterial activity. Finally, we conducted ex planta studies to show that not only do the chimeras clear the causative bacteria from citrus leaves with HLB and from apple leaves with fire blight but they also augment the host's innate immunity during infection. This platform technology can be extended to design host-derived chimeras against multiple pathogenic bacteria that cause diseases in plants and animals of agricultural importance and in humans.

5.
Biophys Chem ; 159(1): 90-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21683504

RESUMO

In adaptation biology the discovery of intracellular osmolyte molecules that in some cases reach molar levels, raises questions of how they influence protein thermodynamics. We've addressed such questions using the premise that from atomic coordinates, the transfer free energy of a native protein (ΔG(tr,N)) can be predicted by summing measured water-to-osmolyte transfer free energies of the protein's solvent exposed side chain and backbone component parts. ΔG(tr,D) is predicted using a self avoiding random coil model for the protein, and ΔG(tr,D)-ΔG(tr,N), predicts the m-value, a quantity that measures the osmolyte effect on the N⇌D transition. Using literature and newly measured m-values we show 1:1 correspondence between predicted and measured m-values covering a range of 12 kcal/mol/M in protein stability for 46 proteins and 9 different osmolytes. Osmolytes present a range of side chain and backbone effects on N and D solubility and protein stability key to their biological roles.


Assuntos
Proteínas/química , Betaína/química , Glicerol/química , Modelos Biológicos , Concentração Osmolar , Prolina/química , Estabilidade Proteica , Solubilidade , Ureia/química
6.
Methods Enzymol ; 492: 61-125, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21333789

RESUMO

Protein scientists have long used cosolutes to study protein stability. While denaturants, such as urea, have been employed for a long time, the attention became focused more recently on protein stabilizers, including osmolytes. Here, we provide practical experimental instructions for the use of both stabilizing and denaturing osmolytes with proteins, as well as data evaluation strategies. We focus on protein stability in the presence of cosolutes and their mixtures at constant and variable temperature.


Assuntos
Estabilidade Proteica , Proteínas/química , Animais , Humanos , Concentração Osmolar , Dobramento de Proteína , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA