Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Biotechnol ; 40(3): 364-373, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34608326

RESUMO

Mapping the localization of multiple proteins in their native three-dimensional (3D) context would be useful across many areas of biomedicine, but multiplexed fluorescence imaging has limited intrinsic multiplexing capability, and most methods for increasing multiplexity can only be applied to thin samples (<100 µm). Here, we harness the narrow spectrum of Raman spectroscopy and introduce Raman dye imaging and tissue clearing (RADIANT), an optical method that is capable of imaging multiple targets in thick samples in one shot. We expanded the range of suitable bioorthogonal Raman dyes and developed a tissue-clearing strategy for them (Raman 3D imaging of solvent-cleared organs (rDISCO)). We applied RADIANT to image up to 11 targets in millimeter-thick brain slices, extending the imaging depth 10- to 100-fold compared to prior multiplexed protein imaging methods. We showcased the utility of RADIANT in extracting systems information, including region-specific correlation networks and their topology in cerebellum development. RADIANT will facilitate the exploration of the intricate 3D protein interactions in complex systems.


Assuntos
Corantes , Imagem Óptica , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Óptica/métodos
2.
Development ; 148(6)2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33658226

RESUMO

Groucho-related genes (GRGs) are transcriptional co-repressors that are crucial for many developmental processes. Several essential pancreatic transcription factors are capable of interacting with GRGs; however, the in vivo role of GRG-mediated transcriptional repression in pancreas development is still not well understood. In this study, we used complex mouse genetics and transcriptomic analyses to determine that GRG3 is essential for ß cell development, and in the absence of Grg3 there is compensatory upregulation of Grg4Grg3/4 double mutant mice have severe dysregulation of the pancreas gene program with ectopic expression of canonical liver genes and Foxa1, a master regulator of the liver program. Neurod1, an essential ß cell transcription factor and predicted target of Foxa1, becomes downregulated in Grg3/4 mutants, resulting in reduced ß cell proliferation, hyperglycemia, and early lethality. These findings uncover novel functions of GRG-mediated repression during pancreas development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Correpressoras/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Pâncreas/crescimento & desenvolvimento , Proteínas Repressoras/genética , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Células Secretoras de Insulina/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Camundongos , Mutação/genética , Organogênese/genética , Pâncreas/metabolismo
3.
Cell Metab ; 30(6): 1091-1106.e8, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31607563

RESUMO

Many studies have highlighted the role of dysregulated glucagon secretion in the etiology of hyperglycemia and diabetes. Accordingly, understanding the mechanisms underlying pancreatic islet α cell development and function has important implications for the discovery of new therapies for diabetes. In this study, comparative transcriptome analyses between embryonic mouse pancreas and adult mouse islets identified several pancreatic lncRNAs that lie in close proximity to essential pancreatic transcription factors, including the Pax6-associated lncRNA Paupar. We demonstrate that Paupar is enriched in glucagon-producing α cells where it promotes the alternative splicing of Pax6 to an isoform required for activation of essential α cell genes. Consistently, deletion of Paupar in mice resulted in dysregulation of PAX6 α cell target genes and corresponding α cell dysfunction, including blunted glucagon secretion. These findings illustrate a distinct mechanism by which a pancreatic lncRNA can coordinate glucose homeostasis by cell-specific regulation of a broadly expressed transcription factor.


Assuntos
Diabetes Mellitus/metabolismo , Células Secretoras de Glucagon/metabolismo , Fator de Transcrição PAX6/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Perfilação da Expressão Gênica , Glucagon/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Diabetes ; 68(12): 2259-2271, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31519700

RESUMO

Inactivation of the ß-cell transcription factor NEUROD1 causes diabetes in mice and humans. In this study, we uncovered novel functions of NEUROD1 during murine islet cell development and during the differentiation of human embryonic stem cells (HESCs) into insulin-producing cells. In mice, we determined that Neurod1 is required for perinatal proliferation of α- and ß-cells. Surprisingly, apoptosis only makes a minor contribution to ß-cell loss when Neurod1 is deleted. Inactivation of NEUROD1 in HESCs severely impaired their differentiation from pancreatic progenitors into insulin-expressing (HESC-ß) cells; however, survival or proliferation was not affected at the time points analyzed. NEUROD1 was also required in HESC-ß cells for the full activation of an essential ß-cell transcription factor network. These data reveal conserved and distinct functions of NEUROD1 during mouse and human ß-cell development and maturation, with important implications about the function of NEUROD1 in diabetes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Sobrevivência Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética
5.
Diabetes ; 67(8): 1461-1470, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29937433

RESUMO

Diabetes is a complex group of metabolic disorders that can be accompanied by several comorbidities, including increased risk of early death. Decades of diabetes research have elucidated many genetic drivers of normal islet function and dysfunction; however, a lack of suitable treatment options suggests our knowledge about the disease remains incomplete. The establishment of long noncoding RNAs (lncRNAs), once dismissed as "junk" DNA, as essential gene regulators in many biological processes has redefined the central role for RNA in cells. Studies showing that misregulation of lncRNAs can lead to disease have contributed to the emergence of lncRNAs as attractive candidates for drug targeting. These findings underscore the need to reexamine islet biology in the context of a regulatory role for RNA. This review will 1) highlight what is known about lncRNAs in the context of diabetes, 2) summarize the strategies used in lncRNA discovery pipelines, and 3) discuss future directions and the potential impact of studying the role of lncRNAs in diabetes.


Assuntos
Regulação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo , Modelos Biológicos , RNA Longo não Codificante/metabolismo , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/patologia , Terapias em Estudo/tendências
6.
Elife ; 62017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071588

RESUMO

Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the ß cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective ß cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteína Homeobox Nkx-2.2 , Camundongos , Camundongos Knockout , Proteínas de Peixe-Zebra
7.
Curr Opin Endocrinol Diabetes Obes ; 22(2): 77-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25692923

RESUMO

PURPOSE OF REVIEW: The identification and characterization of essential islet transcription factors have improved our understanding of ß cell development, provided insights into many of the cellular dysfunctions related to diabetes, and facilitated the successful generation of ß cells from alternative cell sources. Recently, noncoding RNAs have emerged as a novel set of molecules that may represent missing components of the known islet regulatory pathways. The purpose of this article is to highlight studies that have implicated noncoding RNAs as important regulators of pancreas cell development and ß cell function. RECENT FINDINGS: Disruption of essential components of the microRNA processing machinery, in addition to misregulation of individual microRNAs, has revealed the importance of microRNAs in pancreas development and ß cell function. Furthermore, over 1000 islet-specific long noncoding RNAs have been identified in mouse and human islets, suggesting that this class of noncoding molecules will also play important functional roles in the ß cell. SUMMARY: The analysis of noncoding RNAs in the pancreas will provide important new insights into pancreatic regulatory processes that will improve our ability to understand and treat diabetes, and may facilitate the generation of replacement ß cells from alternative cell sources.


Assuntos
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , RNA não Traduzido/metabolismo , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatologia , Diabetes Mellitus/terapia , Regulação da Expressão Gênica , Humanos , Prognóstico , RNA não Traduzido/genética , Transdução de Sinais
8.
PLoS Genet ; 9(2): e1003206, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437001

RESUMO

Danforth's short tail mutant (Sd) mouse, first described in 1930, is a classic spontaneous mutant exhibiting defects of the axial skeleton, hindgut, and urogenital system. We used meiotic mapping in 1,497 segregants to localize the mutation to a 42.8-kb intergenic segment on chromosome 2. Resequencing of this region identified an 8.5-kb early retrotransposon (ETn) insertion within the highly conserved regulatory sequences upstream of Pancreas Specific Transcription Factor, 1a (Ptf1a). This mutation resulted in up to tenfold increased expression of Ptf1a as compared to wild-type embryos at E9.5 but no detectable changes in the expression levels of other neighboring genes. At E9.5, Sd mutants exhibit ectopic Ptf1a expression in embryonic progenitors of every organ that will manifest a developmental defect: the notochord, the hindgut, and the mesonephric ducts. Moreover, at E 8.5, Sd mutant mice exhibit ectopic Ptf1a expression in the lateral plate mesoderm, tail bud mesenchyme, and in the notochord, preceding the onset of visible defects such as notochord degeneration. The Sd heterozygote phenotype was not ameliorated by Ptf1a haploinsufficiency, further suggesting that the developmental defects result from ectopic expression of Ptf1a. These data identify disruption of the spatio-temporal pattern of Ptf1a expression as the unifying mechanism underlying the multiple congenital defects in Danforth's short tail mouse. This striking example of an enhancer mutation resulting in profound developmental defects suggests that disruption of conserved regulatory elements may also contribute to human malformation syndromes.


Assuntos
Desenvolvimento Embrionário/genética , Mutagênese Insercional/genética , Retroelementos/genética , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Mesoderma/anormalidades , Mesoderma/crescimento & desenvolvimento , Camundongos , Pâncreas/anormalidades , Pâncreas/crescimento & desenvolvimento , Medula Espinal/anormalidades , Medula Espinal/crescimento & desenvolvimento , Cauda/anatomia & histologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Genes Dev ; 25(21): 2291-305, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22056672

RESUMO

Regulation of cell differentiation programs requires complex interactions between transcriptional and epigenetic networks. Elucidating the principal molecular events responsible for the establishment and maintenance of cell fate identities will provide important insights into how cell lineages are specified and maintained and will improve our ability to recapitulate cell differentiation events in vitro. In this study, we demonstrate that Nkx2.2 is part of a large repression complex in pancreatic ß cells that includes DNMT3a, Grg3, and HDAC1. Mutation of the endogenous Nkx2.2 tinman (TN) domain in mice abolishes the interaction between Nkx2.2 and Grg3 and disrupts ß-cell specification. Furthermore, we demonstrate that Nkx2.2 preferentially recruits Grg3 and HDAC1 to the methylated Aristaless homeobox gene (Arx) promoter in ß cells. The Nkx2.2 TN mutation results in ectopic expression of Arx in ß cells, causing ß-to-α-cell transdifferentiation. A corresponding ß-cell-specific deletion of DNMT3a is also sufficient to cause Arx-dependent ß-to-α-cell reprogramming. Notably, subsequent removal of Arx in the ß cells of Nkx2.2(TNmut/TNmut) mutant mice reverts the ß-to-α-cell conversion, indicating that the repressor activities of Nkx2.2 on the methylated Arx promoter in ß cells are the primary regulatory events required for maintaining ß-cell identity.


Assuntos
Células Secretoras de Glucagon/citologia , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Proteínas Correpressoras , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Diabetes Mellitus/fisiopatologia , Regulação da Expressão Gênica , Grelina/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Insulina/metabolismo , Camundongos , Mutação , Proteínas Nucleares , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra
10.
Development ; 138(15): 3213-24, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750032

RESUMO

The homeodomain transcription factor Nkx2.2 is essential for pancreatic development and islet cell type differentiation. We have identified Tm4sf4, an L6 domain tetraspanin family member, as a transcriptional target of Nkx2.2 that is greatly upregulated during pancreas development in Nkx2.2(-/-) mice. Tetraspanins and L6 domain proteins recruit other membrane receptors to form active signaling centers that coordinate processes such as cell adhesion, migration and differentiation. In this study, we determined that Tm4sf4 is localized to the ductal epithelial compartment and is prominent in the Ngn3(+) islet progenitor cells. We also established that pancreatic tm4sf4 expression and regulation by Nkx2.2 is conserved during zebrafish development. Loss-of-function studies in zebrafish revealed that tm4sf4 inhibits α and ß cell specification, but is necessary for ε cell fates. Thus, Tm4sf4 functional output opposes that of Nkx2.2. Further investigation of how Tm4sf4 functions at the cellular level in vitro showed that Tm4sf4 inhibits Rho-activated cell migration and actin organization in a ROCK-independent fashion. We propose that the primary role of Nkx2.2 is to inhibit Tm4sf4 in endocrine progenitor cells, allowing for delamination, migration and/or appropriate cell fate decisions. Identification of a role for Tm4sf4 during endocrine differentiation provides insight into islet progenitor cell behaviors and potential targetable regenerative mechanisms.


Assuntos
Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Ilhotas Pancreáticas/embriologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Grelina/genética , Grelina/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Alinhamento de Sequência , Células-Tronco/citologia , Células-Tronco/fisiologia , Fatores de Transcrição/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA