Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosurg ; : 1-12, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126726

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) of the centromedian nucleus (CM) is used to treat diverse brain diseases including epilepsy, Tourette syndrome, and disorders of consciousness. However, the CM is challenging to visualize on routine MRI. Many surgeons use an indirect targeting method based on established stereotactic coordinates. The authors aimed to quantify how often a DBS electrode's contacts were positioned within the CM using this approach, and to identify alternative indirect coordinates that are more accurate. METHODS: Indirect targeting of the CM was performed on 100 MR images obtained in healthy adults, and the resulting coordinates were warped to a common brain template. To estimate positions of DBS contacts along this trajectory, the authors developed a probable electrode location (PEL) mask, modeled on trajectory angles obtained from prior clinical cases. Euclidean and x, y, and z distances between the centroids of the PEL mask and an atlas-based CM mask were measured and defined as error. The percentage of overlaps between the PEL mask and nearby thalamic nuclei was determined. To assess the clinical utility of this methodology, the analysis was validated using 20 MR images obtained in patients with generalized epilepsy, a common clinical indication for CM-DBS. RESULTS: Using standard indirect coordinates, the authors found the average Euclidean error to be 4.40 ± 1.05 mm, and the x, y, and z errors were 4.19 ± 0.97 mm, 0.73 ± 0.65 mm, and 0.66 ± 0.69 mm, respectively. The PEL mask overlap was 52% with the CM and 65% with the ventral posteromedial nucleus. Variation in third ventricular width was the dominant contributor to these errors (r = -0.71). To overcome this variation, the authors developed alternative indirect coordinates: 4.5 mm lateral to the posterolateral corner of the third ventricle at the level of the posterior commissure. With this refinement, the average Euclidean error was reduced to 1.24 ± 0.5 mm, with 84% of the PEL mask within the CM. CONCLUSIONS: The unavailability of advanced MRI for direct targeting limits access to CM-DBS in resource-constrained neurosurgical programs. Standard indirect coordinates do not provide optimal targeting of the CM, with most contacts laterally placed in the sensory thalamus. The proposed indirect approach may therefore increase the accuracy and availability of CM-DBS, while reducing side effects.

2.
Brain Commun ; 6(3): fcae161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764777

RESUMO

This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.

3.
J Neurosurg ; 141(2): 372-380, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457804

RESUMO

OBJECTIVE: Surgical intervention can be curative or palliative for drug-resistant focal epilepsy. However, if the seizure onset zone (SOZ) cannot be adequately localized via noninvasive tests, intracranial EEG (iEEG) recordings are often carried out to develop surgical plans in appropriate candidates. Stereotactic EEG (SEEG), subdural EEG (SDE), and SDE with depth electrodes (hybrid) are major tools used for investigation, but there is no class 1 or 2 evidence comparing the effectiveness of these modalities. METHODS: The authors identified an institutional cohort of patients who underwent iEEG monitoring between 2001 and 2022. Demographic data, preoperative clinical features, iEEG intervention, and follow-up data were identified. Primary study endpoints included the following: 1) likelihood of SOZ localization; 2) likelihood of surgical treatment after iEEG; 3) seizure outcomes; and 4) complications. RESULTS: A total of 329 patients were identified (176 in the SEEG, 60 in the SDE, and 93 in the hybrid cohort) who were followed for a median of 5.4 (IQR 6.8) years. Baseline characteristics, including demographics, mean age at epilepsy diagnosis, mean age at iEEG investigation, number of preoperative antiseizure medications, and preoperative seizure frequency, were not statistically different across the 3 cohorts. Patients in the SEEG cohort were more likely to have their SOZ localized than were the patients in the SDE group (OR 2.3) and were less likely to undergo subsequent resection (OR 0.3) or to have complications (OR 0.4), although there was no statistical difference with respect to likelihood of undergoing any subsequent neurosurgical treatment, or with respect to favorable seizure outcomes. Patients in the hybrid cohort were more likely to have SOZ localized than were patients in the SDE group (OR 3.1), but were more likely to undergo resection (OR 4.9) or any neurosurgical treatment (OR 2.5) compared to patients in the SEEG group. Patients in the hybrid cohort had better seizure outcomes compared to the SDE (OR 2.3) but not to the SEEG group. CONCLUSIONS: Patients in the SEEG group were more likely to have their SOZ localized and patients in the SDE group were more likely to undergo resection, but they did not differ with respect to seizure outcomes.


Assuntos
Eletrocorticografia , Técnicas Estereotáxicas , Humanos , Masculino , Feminino , Adulto , Eletrocorticografia/métodos , Resultado do Tratamento , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Adulto Jovem , Adolescente , Espaço Subdural/cirurgia , Procedimentos Neurocirúrgicos/métodos , Estudos de Coortes , Pessoa de Meia-Idade , Estudos Retrospectivos , Eletrodos Implantados , Epilepsia/cirurgia
4.
J Neurosurg ; 141(2): 518-528, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38457800

RESUMO

OBJECTIVE: MRI-guided laser interstitial thermal therapy (MRgLITT) has recently gained interest as an ablative stereotactic procedure for intractable epilepsy, movement disorders, and brain tumors. Conventionally, a LITT system consists of a laser generator and cooled laser applicator, which is a fiber optic core surrounded by a sheath through which cooled fluid is pumped. However, this footprint can make the system bulky and nonmobile, limit the maximum depth of targeting, and increase the chances of breakdown. Herein, the authors conduct a preclinical assessment of a noncooled MRgLITT system in a porcine model. METHODS: Three-tesla MRI was used to guide the in vivo placement of noncooled laser applicators in the porcine brain. The study consisted of a survival arm and terminal arm. The laser was activated at a power of 4-7 W for ≤ 180 seconds. Temperature changes were monitored using the MR thermometry software ThermoGuide in the survival arm (n = 5) or both ThermoGuide software and adjacently inserted thermal probes in the terminal arm (n = 3). Thermal damage was determined by the software using the temperature-time relationship of cumulative equivalent minutes at 43°C (CEM43). Temperatures calculated by the software were compared with those recorded by the temperature probes. The dimensions of thermal damage thresholds (TDTs; 2-9, 10-59, 60-239, ≥ 240 CEM43 isolines) given by MR thermometry were compared with the dimensions of irreversible damage on histopathological analysis. RESULTS: There was a strong correlation between temperature recordings by ThermoGuide and those by thermal probes at both 4 mm (r = 0.96) and 8 mm (r = 0.80), with a mean absolute error of 0.76°C ± 2.13°C and 0.17°C ± 1.65°C at 4 and 8 mm, respectively. The area of 2-9 CEM43 was larger than the area of irreversible damage seen on histopathological analysis. The dimensions of the 10 and 60 CEM43 correlated well with dimensions of the lesion on histopathological analysis. A well-defined border (≤ 1 mm) was observed between the area of irreversible damage and healthy brain tissue. CONCLUSIONS: This preclinical assessment showed that the noncooled LITT system was able to precisely reach the target and create well-defined lesions within a margin of safety, without any adverse effects. MR thermometry software provided an accurate near-real-time temperature of the brain tissue, and dimensions of the lesion as visualized by the software correlated well with histopathological findings. Further studies to test the system's efficacy and safety in human subjects are in progress.


Assuntos
Terapia a Laser , Imageamento por Ressonância Magnética , Termometria , Animais , Terapia a Laser/métodos , Terapia a Laser/instrumentação , Suínos , Termometria/métodos , Imageamento por Ressonância Magnética/métodos , Procedimentos Neurocirúrgicos/métodos , Encéfalo/cirurgia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cirurgia Assistida por Computador/métodos
5.
J Clin Neurosci ; 120: 76-81, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211444

RESUMO

BACKGROUND: When deep brain stimulation (DBS) infections are identified, they are often too advanced to treat without complete hardware removal. New objective markers to promptly identify DBS infections are needed. We present a patient with GPi (globus pallidus interna) DBS for dystonia, where the electrode impedance unexpectedly increased 3-months post-operatively, followed by serologic and hematologic markers of inflammation at 6-months, prompting explantation surgery. We recreated these conditions in a laboratory environment to analyze the pattern of changing of electrical impedance across the contacts of a DBS lead following Staphylococcus biofilm formation. METHODS: A stainless-steel culture chamber containing 1 % brain heart infusion agar was used. A DBS electrode was dipped in peptone water containing a strain of S. aureus and subsequently introduced into the chamber. The apparatus was incubated at 37 °C for 6 days. Impedance was measured at 24hr intervals. A control experiment without S. Aureus inoculation was used to determine changes in impedance over a period of 6-days. RESULTS: The mean monopolar impedance on day-1 was 751.8 ± 23.8 Ω and on day-3 was 1004.8 ± 68.7 Ω, a 33.7 % rise (p = 0.007). A faint biofilm formation could be seen around the DBS lead by day-2 and florid growth by day-3. After addition of the linezolid solution, a 15.9 % decrease in monopolar impedance was observed from day 3-6 (p = 0.003). CONCLUSION: This study gives insight into impedance trends following a hardware infection in DBS. Increased impedance outside expected norms may be valuable for early prediction of infection. Furthermore, timely management using antibiotics might reduce the frequency of infection-related explant surgeries.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos , Humanos , Impedância Elétrica , Staphylococcus aureus , Eletrodos , Globo Pálido/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA