Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Future Microbiol ; 19(10): 857-866, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904282

RESUMO

Aim: Currently, we have limited armamentarium of antifungal agents against Mucorales. There is an urgent need to discover novel antifungal agents that are effective, safe and affordable. Materials & methods: In this study, the anti-Mucorale action of native lactoferrin (LF) and its functional fragments CLF, RR6 and LFcin against three common Mucorale species are reported. The synergistic action of LF with antifungal agents like amphotericin B, isavuconazole and posaconazole was analyzed using checkerboard technique. Results: All the three mucor species showed inhibition when treated with fragments. The checkerboard assay confirmed that native LF showed the best synergistic action against Mucorales in combination with Amphotericin B. Conclusion: These results highlight the potential therapeutic value of native LF against Mucorales.


Black fungus, or 'mucormycosis', is a dangerous fungal infection. Normally, it affects people with a weakened immune system. It is only treatable when diagnosed early. It spreads by breathing the fungus in, eating contaminated food or direct contact with an infected wound. There are not many medicines that can treat this type of fungus, so it is important to find new ones. In this study, we tested a natural protein called lactoferrin and some of its building blocks, called peptides, to see if they could stop the fungus from growing. Lactoferrin and its peptides could stop the fungus from growing, especially when used with a medicine called amphotericin B. This means that lactoferrin could potentially be a helpful treatment for this fungal infection.


Assuntos
Anfotericina B , Antifúngicos , Sinergismo Farmacológico , Lactoferrina , Testes de Sensibilidade Microbiana , Mucormicose , Lactoferrina/farmacologia , Lactoferrina/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Anfotericina B/farmacologia , Humanos , Triazóis/farmacologia , Triazóis/uso terapêutico , Mucorales/efeitos dos fármacos , Mucor/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Nitrilas/farmacologia , Nitrilas/uso terapêutico
2.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37665961

RESUMO

Ras signaling plays an important role in growth, proliferation, and developmental patterning. Maintaining appropriate levels of Ras signaling is important to establish patterning in development and to prevent diseases such as cancer in mature organisms. The Ras protein is represented by Ras85D in Drosophila and by HRas, NRas, and KRas in mammals. In the past dozen years, multiple reports have characterized both inhibitory and activating ubiquitination events regulating Ras proteins. Inhibitory Ras ubiquitination mediated by Rabex-5 or Lztr1 is highly conserved between flies and mammals. Activating ubiquitination events at K117 and K147 have been reported in mammalian HRas, NRas, and KRas, but it is unclear if these activating roles of K117 and K147 are conserved in flies. Addressing a potential conserved role for these lysines in Drosophila Ras activation requires phenotypes strong enough to assess suppression. Therefore, we utilized oncogenic Ras, RasG12V, which biases Ras to the GTP-loaded active conformation. We created double mutants RasG12V,K117R and RasG12V,K147R and triple mutant RasG12V,K117R,K147R to prevent lysine-specific post-translational modification of K117, K147, or both, respectively. We compared their phenotypes to RasG12V in the wing to reveal the roles of these lysines. Although RasG12V,K147R did not show compelling or quantifiable differences from RasG12V, RasG12V,K117R showed visible and quantifiable suppression compared to RasG12V, and triple mutant RasG12V,K117R,K147R showed dramatic suppression compared to RasG12V and increased suppression compared to RasG12V,K117R. These data are consistent with highly conserved roles for K117 and K147 in Ras activation from flies to mammals.


Assuntos
Proteínas de Drosophila , Proteínas Proto-Oncogênicas p21(ras) , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Drosophila/genética , Drosophila/metabolismo , Lisina , Proteínas ras/genética , Proteínas ras/metabolismo , Mamíferos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
J Dairy Res ; 89(4): 427-430, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36533547

RESUMO

Lactoperoxidase (LPO) is a glycosylated antimicrobial protein present in milk with a molecular mass of 78 kDa. LPO is included in many biological processes and is well-known to have biocidal actions, acting as an active antibiotic and antiviral agent. The wide spectrum biocidal activity of LPO is mediated via a definite inhibitory system named lactoperoxidase system which plays a potent role in the innate immune response. With the current advancement in nanotechnology, nanoformulations can be developed for stabilizing and potentiating the activity of LPO for several applications. In the research described in this Research Communication, fresh LPO purified from bovine mammary gland secretions was used for nanoparticle synthesis using a simple thermal process at different pH and temperatures. The round-shaped nanoparticles (average size 229 nm) were successfully synthesized at pH 7.0 and a temperature of 75°C. These nanoparticles were tested against four different bacterial species namely S. flexineri, P. aeruginosa, S. aureus, and E. coli. The prepared nanoparticles exhibited strong inhibition of the growth against all four bacterial species as stated by their MIC and ZOI values. These results may help in increasing the efficiency of lactoperoxidase system and will assist in identifying novel avenues to enhance the stability and antimicrobial function of LPO in drug discovery and industrial processes.


Assuntos
Anti-Infecciosos , Lactoperoxidase , Animais , Bovinos , Lactoperoxidase/química , Escherichia coli , Staphylococcus aureus , Leite/química , Anti-Infecciosos/farmacologia
4.
Protein Pept Lett ; 29(10): 839-850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35975859

RESUMO

BACKGROUND: The ESKAPE group of pathogens which comprise of multidrug resistant bacteria, namely Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are the cause of deadly nosocomial infections all over the world. While these pathogens have developed robust strategies to resist most antibiotics, their ability to form biofilms is one of their most combative properties. Hence there is an urgent need to discover new antibacterial agents which could prevent or destroy the biofilms made by these bacteria. Though it has been established that lactoferrin (LF), a potent iron binding antibacterial, antifungal, and antiviral protein displays anti-biofilm properties, its mechanisms of action, in addition to its iron chelation property, still remains unclear. OBJECTIVE: The binding and inhibition studies of LF with the enzyme Nucleoside diphosphate Kinase (NDK) and its elastase cleaved truncated 12 kDa fragment (12-NDK). METHODS: The characterization studies of NDK and 12-NDK using florescence spectroscopy, dynamic light scattering, size exclusion chromatography and ADP-glo Kinase Assay. Inhibition studies of LF-NDK using ADP-glo kinase assay, Surface Plasmon Resonance and Biofilm inhibition studies. RESULTS: NDK and 12-NDK were cloned, expressed and purified from Acinetobacter baumannii and Pseudomonas aeruginosa. The characterization studies revealed NDK and 12-NDK from both species are stable and functional. The inhibition studies of LF-NDK revealed stable binding and inhibition of kinase activity by LF. CONCLUSION: The binding and inhibition studies have shown that while LF binds with both the NDK and their truncated forms, it tends to have a higher binding affinity with the truncated 12 kDa fragments, resulting in their decreased kinase activity. This study essentially gives a new direction to the field of inhibition of biofilm formation, as it proves that LF has a novel mechanism of action in other than iron sequestration.


Assuntos
Acinetobacter baumannii , Núcleosídeo-Difosfato Quinase , Núcleosídeo-Difosfato Quinase/química , Núcleosídeo-Difosfato Quinase/metabolismo , Lactoferrina/farmacologia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Ferro , Difosfato de Adenosina
5.
Indian J Ophthalmol ; 70(7): 2328-2334, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35791114

RESUMO

Lactoferrin (LF) is an iron-binding glycoprotein released from mucous secreting cells and neutrophils. LF can be used in a broad range of eye diseases related to the retina, cornea, and optic nerve. The retina is particularly affected by oxidative stress inside the photoreceptor being constantly exposed to light which induces accumulation of reactive oxygen species (ROS) in the retinal pigmented epithelium (RPE) causing damage to photoreceptor recycling. Retinitis pigmentosa (RP) and macular degeneration are inherited retinopathies that consist of different disease-causing genes, that cause mutations with highly varied clinical consequences. Age-related macular degeneration is a chronic disease of the retina and one of the major causes of sight loss. This review provides an application of lactoferrin and LF-based nano-formulations or nanoparticles in the field of retinal diseases or corneal diseases such as retinitis pigmentosa, retinoblastoma, age-related macular degeneration (AMD), keratoconus and uveitis. Several studies have found that lactoferrin's antibacterial activity is not limited to its iron sequestration, but also its ability as a nanoparticle that acts as a carrier to deliver drugs by crossing the blood-retina barrier (BRB) and its involvement in cell cycle control, which is not possible by many transferrin proteins.


Assuntos
Degeneração Macular , Retinose Pigmentar , Humanos , Ferro/metabolismo , Lactoferrina/metabolismo , Degeneração Macular/metabolismo , Retina/metabolismo , Retinose Pigmentar/metabolismo
6.
Protein J ; 40(6): 857-866, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734372

RESUMO

C-lobe represents the C-terminal half of lactoferrin which is a bilobal 80 kDa iron binding glycoprotein. The two lobes are designated as N-lobe (Ser1-Glu333) and C-lobe (Arg344-Arg689). The N- and C-lobes are connected by a 10-residue long α-helical peptide (Thr334-Thr343). Both lobes adopt similar conformations and have identical iron binding sites. The bilobal lactoferrin was hydrolyzed in a limited proteolysis using pepsin at pH 2.0. It produced a 40 kDa and fully functional C-lobe which was purified and crystallized at pH 8.0. The structure determination revealed that the structure contained residues from Tyr342 to Arg689 representing a fully functional monoferric C-lobe. It showed that pepsin cleaved lactoferrin at the peptide bond Arg341-Tyr342 which is part of the inter-lobe decapeptide. Interestingly, the two previously determined structures of the enzymatically produced C-lobe using trypsin and proteinase K also cleaved lactoferrin at the same peptide bond Arg341-Tyr342. This was a striking result as the three enzymes, pepsin, trypsin and proteinase K have different specificity requirements and yet they cleaved the bilobal lactoferrin at the same peptide bond and generated an identical and fully functional C-lobe. This shows that the observed cleavage site in lactoferrin adopts a highly favourable conformation for proteolysis. It is noteworthy that the three enzymes with different specificities cut the protein at the same peptide bond which may be of physiological significance because the antibacterial action of lactoferrin is extended further through the C-lobe.


Assuntos
Lactoferrina , Pepsina A , Sítios de Ligação , Ferro/metabolismo , Serina Proteases
7.
Front Microbiol ; 12: 672589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220755

RESUMO

The problem of antibiotic resistance has prompted researchers around the globe to search for new antimicrobial agents. Antimicrobial proteins and peptides are naturally secreted by almost all the living organisms to fight infections and can be safer alternatives to chemical antibiotics. Lactoferrin (LF) is a known antimicrobial protein present in all body secretions. In this study, LF was digested by trypsin, and the resulting hydrolysates were studied with respect to their antimicrobial properties. Among the hydrolysates, a 21-kDa basic fragment of LF (termed lactosmart) showed promise as a new potent antimicrobial agent. The antimicrobial studies were performed on various microorganisms including Shigella flexneri, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli as well as fungal pathogens such as Candida albicans, Candida tropicalis, and Candida glabrata. In addition, the lipopolysaccharide (LPS)-binding properties of lactosmart were studied using surface plasmon resonance technique in vitro, along with docking of LPS and molecular dynamics (MD) simulation studies. The results showed that lactosmart had better inhibitory effects against pathogenic microorganisms compared to LF. The results of docking and MD simulation studies further validated the tighter binding of LPS to lactosmart compared to LF. The two LPS-binding sites have been characterized structurally in detail. Through these studies, it has been demonstrated that in native LF, only one LPS-binding site remains exposed due to its location being on the surface of the molecule. However, due to the generation of the lactosmart molecule, the second LPS-binding site gets exposed too. Since LPS is an essential and conserved part of the bacterial cell wall, the pro-inflammatory response in the human body caused by LPS can be targeted using the newly identified lactosmart. These findings highlight the immense potential of lactosmart in comparison to native LF in antimicrobial defense. We propose that lactosmart can be further developed as an antibacterial, antifungal, and antibiofilm agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA