Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13886, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620547

RESUMO

Toxic dyes in water bodies and bacterial pathogens pose serious global challenges to human health and the environment. Zinc oxide nanoparticles (ZnO NPs) demonstrate remarkable photocatalytic and antibacterial potency against reactive dyes and bacterial strains. In this work, PVP-ZnO NPs have been prepared via the co-precipitation method using polyvinylpyrrolidone (PVP) as a surfactant. The NPs' microstructure and morphology were studied using X-ray diffraction (XRD), having a size of 22.13 nm. High-resolution transmission electron microscope (HR-TEM) and field emission scanning electron microscopy (FESEM) analysis showed spherical-shaped PVP-ZnO NPs with sizer ranging from 20 to 30 nm. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the hybrid nature of the NPs, and UV-Vis spectroscopy showed an absorption peak at 367 nm. The PVP-ZnO NPs exhibited high photocatalytic activity, achieving 88% and nearly 95% degradation of reactive red-141 azo dye with 10 mg and 20 mg catalyst dosages, respectively. The antibacterial properties of the NPs were demonstrated against Escherichia coli and Bacillus subtilis, with inhibition zones of 24 mm and 20 mm, respectively. These findings suggest that PVP-ZnO NPs can be effectively used for water treatment, targeting both dye and pathogenic contaminants.


Assuntos
Anti-Infecciosos , Nanopartículas , Óxido de Zinco , Humanos , Povidona , Óxido de Zinco/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Antibacterianos/farmacologia , Corantes , Escherichia coli
2.
Chemosphere ; 317: 137841, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642143

RESUMO

It has been a never-ending quest to design a safe, cost-effective, and environmentally acceptable technology for eliminating contaminants from water and countering antibiotic resistance. Herein, a waste leaf extract from the abundant and renewable plant, Brassica oleracea var. gongylodes, is introduced as a cost-effective and sustainable means to generate gold (Au) and Au@Ag core-shell nanoparticles (NPs). In comparison to the bare Au NPs, bimetallic NPs demonstrated improved catalytic and antibacterial capabilities. The reduction process conforms to the pseudo-first-order kinetic, and apparent rate constant (kapp) was calculated to be 0.46 min-1, according to the kinetic analysis. With both microbial pathogens, E. coli (Gram-negative) and B. subtilis (Gram-positive), an increment of Au and Au@Ag NPs lead to a considerable improvement in the zone of clearance. The present outcome is a step forward in the establishment of a viable and cost-effective catalytic and antibacterial platform based on bimetallic NPs that could be generated in an inexpensive and eco-friendly manner.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Escherichia coli , Cinética , Nanopartículas Metálicas/toxicidade , Antibacterianos/farmacologia , Ouro/farmacologia
3.
Chemosphere ; 313: 137322, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427583

RESUMO

The rapid growth of pollutants, both biological and non-biological, puts environmental systems in jeopardy. In view of this, the current study demonstrates the synthesis of undoped and Cobalt-doped zinc oxide nanoparticles (Co doped ZnO NPs) via co-precipitation method. The confirmation of incorporation of the Co dopant into ZnO NPs was verified through various spectroscopic and microscopic techniques. UV-absorption spectra of cobalt-doped ZnO NPs revealed a red shift with change of absorption spectra from 356 nm to 377 nm as compared to undoped ZnO NPs. XRD studies inferred that the average crystallite size of 0.5% and 1% Co-doped ZnO powder was obtained to be ∼16 nm and 14 nm respectively. A drop in band gap value from 3.48 eV to 3.30 eV provided as substantive evidence of the successful integration of Co2+ ions inside the ZnO matrix. FESEM and HRTEM studies revealed that the obtained ZnO NPs are in narrow size distribution (15-20 nm) with a wurtzite crystal structure. The synthesized ZnO and Co-ZnO NPs showed excellent photocatalytic and antimicrobial potency towards reactive brown dye (RB-1) and two bacterial strains, respectively. 1% Co-doped ZnO demonstrated the maximum photocatalytic activity (∼95%), in contrast to 0.5% Co-doped ZnO and undoped ZnO. Thus, the findings of this work support the developed system has a dual role as the photocatalyst, and antibacterial agent for efficient environmental remediation.


Assuntos
Anti-Infecciosos , Nanopartículas , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cobalto/química
4.
Environ Res ; 219: 114952, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36502907

RESUMO

Groundwater pollution is mostly caused by overuse of fertilizers, pesticides, contemporary agricultural practices, anthropogenic activities, home waste disposal, and the rapid expansion of the chemical industry. Drinking tainted water on a regular basis can have detrimental consequences on human health as well on environment. Nanoparticles (NPs) based contaminants alleviation strategy found to be most efficient, cost-effective and reliable. In this study, ZnO NPs were synthesized via citrus limon leaves extract as a sustainable/cost-effective method. Diverse microscopic and spectroscopic studies confirmed the formation of spherical ZnO NPs with size range 15-25 nm. Reactive green-19 (RG-19) was degraded photocatalytically under direct solar irradiation (degradation efficiency âˆ¼ 92%, rate constant 0.03 min -1, 80 min) in the presence of ZnO NPs. These ZnO NPs also demonstrated highly substantial antibacterial action against two pathogenic Gram-positive (Bacillus subtilis, zone of clearance: 8.6 mm) and Gram-negative (Escherichia coli, zone of clearance: 9.8 mm) bacteria. Thus, the present study demonstrates the effective/sustainable NPs based platform for water remediation.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Óxido de Zinco , Humanos , Óxido de Zinco/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA