Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 8: 15996, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28660875

RESUMO

Spin fluctuations are a leading candidate for the pairing mechanism in high temperature superconductors, supported by the common appearance of a distinct resonance in the spin susceptibility across the cuprates, iron-based superconductors and many heavy fermion materials. The information we have about the spin resonance comes almost exclusively from neutron scattering. Here we demonstrate that by using low-temperature scanning tunnelling microscopy and spectroscopy we can characterize the spin resonance in real space. We show that inelastic tunnelling leads to the characteristic dip-hump feature seen in tunnelling spectra in high temperature superconductors and that this feature arises from excitations of the spin fluctuations. Spatial mapping of this feature near defects allows us to probe non-local properties of the spin susceptibility and to image its real space structure.

2.
Nat Commun ; 8: 13939, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-28059102

RESUMO

Establishing the relation between ubiquitous antiferromagnetism in the parent compounds of unconventional superconductors and their superconducting phase is important for understanding the complex physics in these materials. Going from bulk systems to thin films additionally affects their phase diagram. For Fe1+yTe, the parent compound of Fe1+ySe1-xTex superconductors, bulk-sensitive neutron diffraction revealed an in-plane oriented diagonal double-stripe antiferromagnetic spin structure. Here we show by spin-resolved scanning tunnelling microscopy that the spin direction at the surfaces of bulk Fe1+yTe and thin films grown on the topological insulator Bi2Te3 is canted out of the high-symmetry directions of the surface unit cell resulting in a perpendicular spin component, keeping the diagonal double-stripe order. As the magnetism of the Fe d-orbitals is intertwined with the superconducting pairing in Fe-based materials, our results imply that the superconducting properties at the surface of the related superconducting compounds might be different from the bulk.

3.
J Phys Condens Matter ; 29(2): 025004, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-27841999

RESUMO

We report scanning tunnelling microscopy and spectroscopy (STM/STS) studies on one and two unit cell (UC) high FeSe thin films grown on Bi2Se3(0 0 0 1). In our thin films, we find the tetragonal phase of FeSe and dumb-bell shaped defects oriented along Se-Se bond directions. In addition, we observe striped moiré patterns with a periodicity of (7.3 ± 0.1) nm generated by the mismatch between the FeSe lattice and the Bi2Se3 lattice. We could not find any signature of a superconducting gap in the tunneling spectra measured on the surface of one and two UC thick islands of FeSe down to 6.5 K. The spectra rather show an asymmetric behavior across and a finite density of states at the Fermi level (E F) resembling those taken in the normal state of bulk FeSe.

4.
Science ; 345(6197): 653-6, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25081481

RESUMO

Spin-polarized scanning tunneling microscopy (SP-STM) has been used extensively to study magnetic properties of nanostructures. Using SP-STM to visualize magnetic order in strongly correlated materials on an atomic scale is highly desirable, but challenging. We achieved this goal in iron tellurium (Fe(1+ y)Te), the nonsuperconducting parent compound of the iron chalcogenides, by using a STM tip with a magnetic cluster at its apex. Our images of the magnetic structure reveal that the magnetic order in the monoclinic phase is a unidirectional stripe order; in the orthorhombic phase at higher excess iron concentration (y > 0.12), a transition to a phase with coexisting magnetic orders in both directions is observed. It may be possible to generalize the technique to other high-temperature superconductor families, such as the cuprates.

5.
J Phys Condens Matter ; 21(35): 355001, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21828622

RESUMO

The electronic density of states (DOS) of La(0.625)Ca(0.375)MnO(3) (LCMO) strain-free epitaxial thin films with an insulator-metal transition temperature (T(IM)) of 250 K was probed using variable-temperature scanning tunneling microscopy and spectroscopy. We find a depression in the DOS with a finite zero bias conductance (ZBC) signifying a pseudogap in the 78-310 K temperature range. With cooling, the ZBC is found to increase, indicating an increased DOS near E(F). We interpret the pseudogap as a signature of Jahn-Teller polarons while the ZBC change, in agreement with the bulk insulator-metal transition, optical Drude peak and photoemission experiments, indicates the presence of free carriers at the Fermi energy in the metallic phase. The free carriers are discussed in terms of correlated polaronic states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA