Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Bioact Mater ; 33: 114-128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38024230

RESUMO

Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure. Therefore, new reconstructive approaches are warranted, and tissue engineered skin represents an exciting alternative. In this study, we demonstrated the reconstruction of CMF full-thickness skin defects using intraoperative bioprinting (IOB), which enabled the repair of defects via direct bioprinting of multiple layers of skin on immunodeficient rats in a surgical setting. Using a newly formulated patient-sourced allogenic bioink consisting of both human adipose-derived extracellular matrix (adECM) and stem cells (ADSCs), skin loss was reconstructed by precise deposition of the hypodermal and dermal components under three different sets of animal studies. adECM, even at a very low concentration such as 2 % or less, has shown to be bioprintable via droplet-based bioprinting and exhibited de novo adipogenic capabilities both in vitro and in vivo. Our findings demonstrate that the combinatorial delivery of adECM and ADSCs facilitated the reconstruction of three full-thickness skin defects, accomplishing near-complete wound closure within two weeks. More importantly, both hypodermal adipogenesis and downgrowth of hair follicle-like structures were achieved in this two-week time frame. Our approach illustrates the translational potential of using human-derived materials and IOB technologies for full-thickness skin loss.

2.
Small Methods ; : e2301325, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38111377

RESUMO

Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods. a xanthan gum-based material is used which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. IEB's capabilities in organ modeling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite is demonstrated. Further, a head phantom and a Matryoshka doll are 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Toward the use case of IEB and employing an innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity is developed. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.

3.
Biofabrication ; 16(1)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37944186

RESUMO

Three-dimensional (3D) bioprinting offers promising solutions to the complex challenge of vascularization in biofabrication, thereby enhancing the prospects for clinical translation of engineered tissues and organs. While existing reviews have touched upon 3D bioprinting in vascularized tissue contexts, the current review offers a more holistic perspective, encompassing recent technical advancements and spanning the entire multistage bioprinting process, with a particular emphasis on vascularization. The synergy between 3D bioprinting and vascularization strategies is crucial, as 3D bioprinting can enable the creation of personalized, tissue-specific vascular network while the vascularization enhances tissue viability and function. The review starts by providing a comprehensive overview of the entire bioprinting process, spanning from pre-bioprinting stages to post-printing processing, including perfusion and maturation. Next, recent advancements in vascularization strategies that can be seamlessly integrated with bioprinting are discussed. Further, tissue-specific examples illustrating how these vascularization approaches are customized for diverse anatomical tissues towards enhancing clinical relevance are discussed. Finally, the underexplored intraoperative bioprinting (IOB) was highlighted, which enables the direct reconstruction of tissues within defect sites, stressing on the possible synergy shaped by combining IOB with vascularization strategies for improved regeneration.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais
4.
bioRxiv ; 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37808743

RESUMO

Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods. We used a xanthan gum-based material, which served a dual role as both a bioprintable ink and a support bath, due to its unique shear-thinning and self-healing properties. We demonstrated IEB's capabilities in organ modelling, creating a miniaturized replica of a pancreas using a photocrosslinkable silicone composite. Further, a head phantom and a Matryoshka doll were 3D printed, exemplifying IEB's capability to manufacture intricate, nested structures. Towards the use case of IEB and employing innovative coupling strategy between extrusion-based and aspiration-assisted bioprinting, we developed a breast tumor model that included a central channel mimicking a blood vessel, with tumor spheroids bioprinted in proximity. Validation using a clinically-available chemotherapeutic drug illustrated its efficacy in reducing the tumor volume via perfusion over time. This method opens a new way of bioprinting enabling the creation of complex-shaped organs with internal anatomical features.

5.
bioRxiv ; 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37873077

RESUMO

Craniomaxillofacial (CMF) reconstruction is a challenging clinical dilemma. It often necessitates skin replacement in the form of autologous graft or flap surgery, which differ from one another based on hypodermal/dermal content. Unfortunately, both approaches are plagued by scarring, poor cosmesis, inadequate restoration of native anatomy and hair, alopecia, donor site morbidity, and potential for failure. Therefore, new reconstructive approaches are warranted, and tissue engineered skin represents an exciting alternative. In this study, we demonstrated the reconstruction of CMF full-thickness skin defects using intraoperative bioprinting (IOB), which enabled the repair of defects via direct bioprinting of multiple layers of skin on immunodeficient rats in a surgical setting. Using a newly formulated patient-sourced allogenic bioink consisting of both human adipose-derived extracellular matrix (adECM) and stem cells (ADSCs), skin loss was reconstructed by precise deposition of the hypodermal and dermal components under three different sets of animal studies. adECM, even at a very low concentration such as 2% or less, has shown to be bioprintable via droplet-based bioprinting and exhibited de novo adipogenic capabilities both in vitro and in vivo . Our findings demonstrate that the combinatorial delivery of adECM and ADSCs facilitated the reconstruction of three full-thickness skin defects, accomplishing near-complete wound closure within two weeks. More importantly, both hypodermal adipogenesis and downgrowth of hair follicle-like structures were achieved in this two-week time frame. Our approach illustrates the translational potential of using human-derived materials and IOB technologies for full-thickness skin loss.

6.
Biomed Mater ; 18(5)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37451253

RESUMO

In this study, chitosan-gelatin-monetite (CGM)-based electrospun scaffolds have been developed that closely mimicked the microstructure and chemical composition of the extracellular matrix of natural bone. CGM-based nanofibrous composite scaffolds were prepared with the help of the electrospinning technique, post-cross-linked using ethyl(dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide solution to improve their stability in an aqueous environment. The prepared chitosan/gelatin (CG) scaffold showed an average fiber diameter of 308 ± 17 nm, whereas 5 and 7 wt% monetite containing CGM5and CGM7scaffolds, exhibited an average fiber diameter of 287 ± 13 and 265 ± 9 nm, respectively, revealing the fine distribution of monetite particles on the fibrous surface. The distribution of monetite nanoparticles onto the CG nanofibrous surface was confirmed using x-ray diffraction, Fourier transform infrared, and EDAX. Moreover, the addition of 7 wt% monetite into the CG electrospun matrix increased their ultimate tensile strength from 7.62 ± 0.13 MPa in the CG scaffold to 14.34 ± 0.39 MPa in the CGM7scaffold. Simulated body fluid study and staining with alizarin red S (ARS) confirmed the higher mineralization ability of monetite-containing scaffolds compared to that revealed by the CG scaffold. The monetite incorporation into the CG matrix improved its osteogenic properties, including pre-osteoblast MG-63 cell adhesion, proliferation, and differentiation, when seeded with the cells. A higher degree of cellular adhesion, spreading, and migration was observed on the monetite-incorporated CG scaffold than that on the CG scaffold. From 3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide) MTT assay, alkaline phosphatase activity, ARS staining, and immunocytochemistry study, the cultured cells discovered a more conducive microenvironment to proliferate and subsequently differentiate into osteoblast lineage in contact with CGM7nanofibers rather than that in CGM0and CGM5.In-vitroresults indicated that electrospun CGM-based composite scaffolds could be used as a potential candidate to repair and regenerate new bone tissues.


Assuntos
Quitosana , Engenharia Tecidual , Engenharia Tecidual/métodos , Quitosana/química , Gelatina/química , Alicerces Teciduais/química , Osso e Ossos , Proliferação de Células
7.
Biofabrication ; 15(3)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927673

RESUMO

Microgels have recently received widespread attention for their applications in a wide array of domains such as tissue engineering, regenerative medicine, and cell and tissue transplantation because of their properties like injectability, modularity, porosity, and the ability to be customized in terms of size, form, and mechanical properties. However, it is still challenging to mass (high-throughput) produce microgels with diverse sizes and tunable properties. Herein, we utilized an air-assisted co-axial device (ACAD) for continuous production of microgels in a high-throughput manner. To test its robustness, microgels of multiple hydrogels and their combination, including alginate (Alg), gelatin methacrylate (GelMA) and Alg-GelMA, were formed at a maximum production rate of ∼65 000 microgels s-1while retaining circularity and a size range of 50-500µm based on varying air pressure levels. The ACAD platform allowed single and multiple cell encapsulation with 74 ± 6% efficiency. These microgels illustrated appealing rheological properties such as yield stress, viscosity, and shear modulus for bioprinting applications. Specifically, Alg microgels have the potential to be used as a sacrificial support bath while GelMA microgels have potential for direct extrusion both on their own or when loaded in a bulk GelMA hydrogel. Generated microgels showed high cell viability (>90%) and proliferation of MDA-MB-231 and human dermal fibroblasts over seven days in both encapsulation and scaffolding applications, particularly for GelMA microgels. The developed strategy provides a facile and rapid approach without any complex or expensive consumables and accessories for scalable high-throughput microgel production for cell therapy, tissue regeneration and 3D bioprinting applications.


Assuntos
Bioimpressão , Microgéis , Humanos , Encapsulamento de Células , Engenharia Tecidual , Hidrogéis , Gelatina , Alicerces Teciduais , Impressão Tridimensional
8.
Adv Biol (Weinh) ; 7(4): e2200267, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658734

RESUMO

Clinical lung transplantation has rapidly established itself as the gold standard of treatment for end-stage lung diseases in a restricted group of patients since the first successful lung transplant occurred. Although significant progress has been made in lung transplantation, there are still numerous obstacles on the path to clinical success. The development of bioartificial lung grafts using patient-derived cells may serve as an alternative treatment modality; however, challenges include developing appropriate scaffold materials, advanced culture strategies for lung-specific multiple cell populations, and fully matured constructs to ensure increased transplant lifetime following implantation. This review highlights the development of tissue-engineered tracheal and lung equivalents over the past two decades, key problems in lung transplantation in a clinical environment, the advancements made in scaffolds, bioprinting technologies, bioreactors, organoids, and organ-on-a-chip technologies. The review aims to fill the lacuna in existing literature toward a holistic bioartificial lung tissue, including trachea, capillaries, airways, bifurcating bronchioles, lung disease models, and their clinical translation. Herein, the efforts are on bridging the application of lung tissue engineering methods in a clinical environment as it is thought that tissue engineering holds enormous promise for overcoming the challenges associated with the clinical translation of bioengineered human lung and its components.


Assuntos
Transplante de Pulmão , Engenharia Tecidual , Humanos , Bioengenharia , Pulmão , Engenharia Biomédica
9.
J Mech Behav Biomed Mater ; 137: 105524, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332397

RESUMO

This work is dedicated to combining nanotechnology with bone tissue engineering to prepare and characterize electrospun gelatin/monetite nanofibrous scaffold with improved physicochemical, mechanical, and biological properties. Nanofibrous scaffolds possessing fiber diameter in the range of 242-290 nm were prepared after incorporating varying content of monetite nanoparticles up to 7 wt % into the gelatin matrix using the electrospinning technique. Cross-linking of gelatin chains in the scaffold was performed using 0.25 wt% glutaraldehyde as indicated by imine (-CN-) bond formation in the FTIR analysis. With an increase in monetite addition up to 7 wt%, a decrease in swelling ratio and bio-degradability of cross-linked gelatin scaffolds was observed. Gelatin scaffold with 7 wt% monetite content registered the highest values of tensile strength and tensile modulus of 18.8 MPa and 170 MPa, as compared to 0% and 5 wt% monetite containing scaffolds respectively. Cell viability and differentiation were studied after culturing MG-63 cells onto the scaffolds from confocal microscopy of live and dead cells images, MTT assay, and alkaline phosphatase assay for a cell culture period of up to 21 days. It was observed that 7 wt % monetite containing gelatin scaffold exhibited better MG-63 cell adhesion, proliferation, higher biomineralization, and ALP activity compared to 0% and 5 wt% monetite containing electrospun scaffolds studied here.


Assuntos
Gelatina , Nanofibras , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Fosfatos de Cálcio , Nanofibras/química , Proliferação de Células
10.
Biomaterials ; 291: 121881, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36335718

RESUMO

Biofabricated tissues have found numerous applications in tissue engineering and regenerative medicine in addition to the promotion of disease modeling and drug development and screening. Although three-dimensional (3D) printing strategies for designing and developing customized tissue constructs have made significant progress, the complexity of innate multicellular tissues hinders the accurate evaluation of physiological responses in vitro. Cellular aggregates, such as spheroids, are 3D structures where multiple types of cells are co-cultured and organized with endogenously secreted extracellular matrix and are designed to recapitulate the key features of native tissues more realistically. 3D Bioprinting has emerged as a crucial tool for positioning of these spheroids to assemble and organize them into physiologically- and histologically-relevant tissues, mimicking their native counterparts. This has triggered the convergence of spheroid fabrication and bioprinting, leading to the investigation of novel engineering methods for successful assembly of spheroids while simultaneously enhancing tissue repair. This review provides an overview of the current state-of-the-art in spheroid bioprinting methods and elucidates the involved technologies, intensively discusses the recent tissue fabrication applications, outlines the crucial properties that influence the bioprinting of these spheroids and bioprinted tissue characteristics, and finally details the current challenges and future perspectives of spheroid bioprinting efforts in the growing field of biofabrication.


Assuntos
Bioimpressão , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Medicina Regenerativa , Matriz Extracelular , Alicerces Teciduais/química , Esferoides Celulares
11.
Adv Healthc Mater ; 11(24): e2200209, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35670084

RESUMO

3D bioprinting of osteochondral tissue offers unique opportunities for enabling precise pharmacological interventions in osteoarthritis (OA). The current study investigates the screening potential of anti-inflammatory drugs using bioprinted inflamed human osteochondral units. The biomimetic hierarchical geometry is bioprinted using silk-based bioinks encapsulating pre-differentiated stem cells, creating an in vitro model. Inflammation is stimulated in the model, using tumor necrosis factor-alpha and Interleukin-1 beta pro-inflammatory cytokines. The resultant degeneration, akin to OA, is flagged by key markers like sulfated glycosaminoglycan, collagen, alkaline phosphatase, and downregulation of osteochondral transcript levels. In the next step, the screening of anti-inflammatory drugs is validated using celecoxib and rhein. Consequently, in the inflamed constructs, the initial upregulation of the key inflammatory mediators (nitric oxide, Prostaglandin E2), is subsequently downregulated, post-drug treatment. In addition, catabolic markers (matrix metalloproteinases and aggrecanase-1), indicative of hypertrophic and apoptosing chondrocytes, are significantly downregulated in the treatment groups; while the transcript and protein levels required for osteochondral health are attenuated. Therefore, the in vitro model mimicks the inflammation in the early stages of OA, and corroborates a potential high-throughput platform for screening novel anti-inflammatory drugs in OA therapeutics.


Assuntos
Osteoartrite , Seda , Humanos , Seda/metabolismo , Osteoartrite/tratamento farmacológico , Condrócitos/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Interleucina-1beta/metabolismo
12.
J Biomater Sci Polym Ed ; 33(13): 1704-1758, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35443894

RESUMO

The rebuilding of the normal functioning of the damaged human body bone tissue is one of the main objectives of bone tissue engineering (BTE). Fabricated scaffolds are mostly treated as artificial supports and as materials for regeneration of neo bone tissues and must closely biomimetic the native extracellular matrix of bone. The materials used for developing scaffolds should be biodegradable, nontoxic, and biocompatible. For the resurrection of bone disorder, specifically natural and synthetic polymers such as chitosan, PCL, gelatin, PGA, PLA, PLGA, etc. meet the requirements for serving their functions as artificial bone substitute materials. Gelatin is one of the potential candidates which could be blended with other polymers or composites to improve its physicochemical, mechanical, and biological performances as a bone graft. Scaffolds are produced by several methods including electrospinning, self-assembly, freeze-drying, phase separation, fiber drawing, template synthesis, etc. Among them, freeze-drying and electrospinning are among the popular, simplest, versatile, and cost-effective techniques. The design and preparation of freeze-dried and electrospun scaffolds are of intense research over the last two decades. Freeze-dried and electrospun scaffolds offer a distinctive architecture at the micro to nano range with desired porosity and pore interconnectivity for selective movement of small biomolecules and play its role as an appropriate matrix very similar to the natural bone extracellular matrix. This review focuses on the properties and functionalization of gelatin-based polymer and its composite in the form of bone scaffolds fabricated primarily using lyophilization and electrospinning technique and their applications in BTE.


Assuntos
Gelatina , Engenharia Tecidual , Materiais Biocompatíveis , Osso e Ossos , Gelatina/química , Humanos , Poliésteres/química , Polímeros , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
Biomed Mater ; 16(6)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624878

RESUMO

This study was aimed at fabricating monetite nanoparticles impregnated gelatin-based composite scaffold to improve the chemical, mechanical and osteogenic properties. Scaffolds were fabricated using a freeze-drying technique of the slurry containing a varying proportion of gelatin and monetite. The lyophilized scaffolds were cross-linked with 0.25 wt% glutaraldehyde solution to obtain a three-dimensional (3D) interconnected porous microstructure with improved mechanical strength and stability in a physiological environment. The fabricated scaffolds possessed >80% porosity having 3D interconnected pore size distribution varying between 65 and 270 µm as evident from field emission scanning electron microscopy analysis. The average pore size of the prepared scaffold decreased with monetite addition as reflected in values of 210 µm for pure gelatin GM0scaffold and 118 µm registered by GM20scaffold. On increase in monetite content up to 20 wt% of total polymer concentration, compressive strength of the prepared scaffolds was increased from 0.92 MPa in pure gelatin-based GM0to 2.43 MPa in GM20. Up to 20 wt% of monetite reinforced composite scaffolds exhibited higher bioactivity as compared to that observed in pure gelatin-based GM0scaffold. Simulated body fluid (SBF) study and alizarin red assays confirmed higher bio-mineralization ability of GM20as compared to that exhibited by GM0. Human preosteoblast cells (MG-63) revealed higher degree of filopodia and lamellipodia extensions and excellent spreading behavior to anchor with GM20matrix as compared to that onto GM0and GM10. MTT assay and alkaline phosphatase staining study indicated that MG-63 cells found a more conducive environment to proliferate and subsequently differentiate into osteoblast lineage when exposed to GM20scaffolds rather than to GM0and GM10. This study revealed that up to 20 wt% monetite addition in gelatin could improve the performance of prepared scaffolds and serve as an efficient candidate to repair and regenerate bone tissues at musculoskeletal defect sites.


Assuntos
Quitosana , Gelatina , Fosfatos de Cálcio , Quitosana/química , Gelatina/química , Humanos , Porosidade , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Adv Healthc Mater ; 10(20): e2100961, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34302436

RESUMO

Osteoarthritis (OA) is a musculoskeletal disease characterized by progressive degeneration of osteochondral tissues. Current treatment is restricted to the reduction of pain and loss of function of the joint. To better comprehend the OA pathophysiological conditions, several models are employed, however; there is no consensus on a suitable model. In this review, different in vitro models being developed for possible therapeutic intervention of OA are outlined. Herein, various in vitro OA models starting from 2D model, co-culture model, 3D models, dynamic culture model to advanced technologies-based models such as 3D bioprinting, bioassembly, organoids, and organ-on-chip-based models are discussed with their advantages and disadvantages. Besides, different growth factors, cytokines, and chemicals being utilized for induction of OA condition are reviewed in detail. Furthermore, there is focus on scrutinizing different molecular and possible therapeutic targets for better understanding the mechanisms and OA therapeutics. Finally, the underlying challenges associated with in vitro models are discussed followed by future prospective. Taken together, a comprehensive overview of in vitro OA models, factors to induce OA-like conditions, and intricate molecular targets with the potential to develop personalized osteoarthritis therapeutics in the future with clinical translation is provided.


Assuntos
Osteoartrite , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Modelos Animais , Osteoartrite/tratamento farmacológico
15.
J Biomater Sci Polym Ed ; 32(10): 1312-1336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33874849

RESUMO

The present study focuses on the synthesis and characterization of hydroxyapatite-collagen nanoparticles incorporated polyanhydride paste and investigating its bone regeneration capacity in vitro. Photocrosslinkable polyanhydride paste was prepared after synthesizing methacrylate derivatives of 1,6-bis(p-carboxyphenoxy)hexane (MCPH) and sebacic acid dimethacrylate (MSA). These multifunctional monomers, namely 45 wt% MSA, 45 wt% MCPH in addition to 10 wt% poly(ethylene glycol)diacrylate (PEGDA) were photopolymerized under ultraviolet light (365 nm) to produce highly crosslinked polyanhydride networks using camphroquinone (CQ)/ethyl 4-(dimethylamino)benzoate [4-EDMAB] for light initiated crosslinking and benzoyl peroxide (BPO)/dimethyl toludine (DMT) for chemically initiated crosslinking. Separately, using the co-precipitation process, (1 wt%) Si, (1 wt%) Sr, and (0.5 + 0.5) wt% Si/Sr was doped into hydroxyapatite-collagen nanoparticles in size range between 50 and 70 nm. Si, Sr, and both Si/Sr doped hydroxyapatite-collagen nanoparticles to the extent 10 wt% were added to polyanhydride monomer mixture containing 40 wt% MSA, 40 wt% MCPH and 10 wt% PEGDA and subsequently photopolymerized as previously mentioned. Incorporation of hydroxyapatite-collagen nanoparticles to the extent of 10 wt% into polyanhydride matrix enhanced compressive strength of the hardened paste from 30 to 49 MPa. Mesenchymal stem cells obtained from the human umbilical cord were cultured onto pure polyanhydride and hydroxyapatite-collagen added scaffold to assess their cellular proliferation and differentiation capacity to bone cell. MTT assay showed that mesenchymal stem cell proliferation was significantly higher in Si/Sr binary doped hydroxyapatite-collagen-polyanhydride sample as compared to other samples. Again from immunocytochemistry study using confocal images suggested that expression of osteocalcin, a marker indicating differentiation into osteoblast, was the highest in Si/Sr binary doped hydroxyapatite-collagen-polyanhydride sample against the other samples studied in this case. This study thus summarizes the development of photocurable biocomposites containing polyanhydride and Si, Sr doped hydroxyapatite-collagen nanoparticles that exhibited tremendous promise to regenerate bone tissues in complex-shaped musculoskeletal defect sites.


Assuntos
Substitutos Ósseos , Nanopartículas , Polianidridos , Osso e Ossos , Colágeno , Durapatita , Humanos
16.
Methods Cell Biol ; 157: 185-221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334715

RESUMO

The inability of cartilage tissue to self-heal due to its avascular nature often leads to conditions such as osteoarthritis, traumatic rupture of cartilage, and osteochondrosis. The cartilage provides cushioning effects between the joints and avoids bone frictions. The extracellular matrix (ECM) of cartilage consists predominantly of collagens, elastin, proteoglycans and glycoproteins. A number of tissue engineered ECM derived biological scaffolds and matrices are available for cartilage regeneration. The decellularized tissues provide appropriate bioactive cues in the absence of cellular components, hence avoiding immunological issue. However, the decellularization process involves several cellular disruption techniques that may alter the ECM architecture affecting bioactivity. Therefore, development of cell-free cartilage biomaterials with unaltered ECM integrity and bioactivity is of paramount necessity by smart selection of modified techniques and agents. Herein, we described about various decellularization methods, agents, techniques, and their applications in tissue/cartilage decellularization. It also contemplates various difficulties and future perspectives to troubleshoot the existing obstructions in tissue-derived cartilage matrices and their applications.


Assuntos
Cartilagem/citologia , Matriz Extracelular , Engenharia Tecidual/métodos , Alicerces Teciduais , Animais , Bovinos , Humanos , Medicina Regenerativa/métodos , Ovinos , Suínos
17.
J Biomater Sci Polym Ed ; 31(6): 781-803, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31958253

RESUMO

Chitosan (CS) nanofibers were electrospun from aqueous chitosan solution using concentrated acetic acid solution as a solvent. Polyethylene oxide (PEO) with varying weight content from 10- 60 wt% was mixed with chitosan solution that acted as a plasticizer to improve spinability of the prepared chitosan solution. With the increase in PEO content from 10-50 wt% the viscosity of the resultant CS/PEO solution was decreased from 0.938 Pa-s to 0.272 Pa-s, whereas higher the concentration of acetic acid lower was the surface tension of resultant chitosan solution. It was found beadless nanofibrous chitosan mat was obtained not less than 85% acetic acid concentration, 50 wt% PEO and at 0.2 wt% NaCl and 5 wt% total polymer concentration. From field emission scanning electron microscopy (FESEM) investigation, it was observed that chitosan fibers with an average diameter of 149 nm were produced at an applied voltage of 22.5 KV, while that varied between 17.5- 25 KV. On the other hand, a minimum of 110 nm of average diameter chitosan nanofiber was obtained at a needle tip to rotor collector distance of 15 cm by the method of electrospining. In terms of solution flow rate, 0.4 mL/h was found to be optimum in obtaining defect-free electrospun fiber with lower average diameter. As a whole, smooth and uniform chitosan nanofibers were obtained from 50/50 CS/PEO solution prepared by using 90% acetic acid and electrospun at 20 kV applied voltage, 15 cm needle tip-to- rotor collector distance with 0.2 mm inner diameter needle and 0.4 mL/h feeding rate. After crosslinking with 1 wt% glutaraldehyde (GTA), the ultimate tensile strength and Young's modulus of chitosan scaffold increased upto 9.47 MPa and 147.75 MPa respectively. From MTT assay and alkaline phosphatase expression analysis upto 11 days of cell culture period it was evident that thus prepared electrospun CS scaffolds supported MG 63 cell proliferation and its differentiation into mature osteoblast.


Assuntos
Materiais Biocompatíveis/farmacologia , Osso e Ossos/citologia , Quitosana/química , Eletricidade , Nanofibras/química , Polietilenoglicóis/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Módulo de Elasticidade , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Resistência à Tração
18.
J Biomater Sci Polym Ed ; 30(18): 1756-1778, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31526176

RESUMO

Gelatin, chitosan and nano calcium phosphate based composite scaffold with tailored architectures and properties has great potential for bone regeneration. Herein, we aimed to improve the physico chemical, mechanical and osteogenic properties of 3D porous scaffold by incorporation of dihydrogen calcium phosphate anhydrous (DCPA) nanoparticles into biopolymer matrix with variation in composition in the prepared scaffolds. Scaffolds were prepared from the slurry containing gelatin, chitosan and synthesized nano DCPA particle using lyophilization technique. DCPA nano particles were synthesized using calcium carbonate and phosphoric acid in water-ethanol medium. XRD pattern showed phase pure DCPA in synthesized nanopowder. Scaffolds were prepared by addition of DCPA nanoparticles to the extent of 5-10 wt% of total polymer into gelatin-chitosan solution with solid loading varying between 2.5 and 2.75 wt%. The prepared scaffold showed interconnected porosity with pore size varying between 110 and 200 micrometer. With addition of DCPA nanoparticles, average pore size of the prepared scaffolds decreased. With increase in nano ceramic phase content from 5 wt% to 10 wt% of total polymer, the compressive strength of the scaffold increased. Scaffold containing 10 wt% DCPA showed the highest average compressive strength of 2.2 MPa. Higher cellular activities were observed in DCPA containing scaffolds as compared to pure gelatin chitosan scaffold suggesting the fact that nano DCPA addition into the scaffold promoted better osteoblast adhesion and proliferation as evident from MTT assay and scanning electron microscopic (SEM) investigation of osteoblast cultured scaffolds. A higher degree of lamellopodia and filopodia extensions and better spreading behavior of osteoblasts were observed in FESEM micrographs of MG 63 cultured DCPA containing scaffold. The results demonstrated that both mechanical strength and osteogenic properties of gelatin-chitosan scaffold could be improved by addition of anhydrous dihydrogen calcium phosphate nanoparticles into it.


Assuntos
Substitutos Ósseos/química , Fosfatos de Cálcio/química , Quitosana/química , Gelatina/química , Osteoblastos/citologia , Alicerces Teciduais/química , Regeneração Óssea , Adesão Celular , Linhagem Celular , Força Compressiva , Humanos , Engenharia Tecidual/métodos
19.
ACS Appl Mater Interfaces ; 11(37): 33684-33696, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31453678

RESUMO

Cartilage tissue is deprived of intrinsic self-regeneration capability; hence, its damage often progresses to a chronic condition which reduces the quality of life. Toward the fabrication of functional tissue substitutes, three-dimensional (3D) bioprinting has progressed vastly over the last few decades. However, this progress is challenged by the difficulty in developing suitable bioink materials as most of them require toxic chemical cross-linking. In this study, our goal was to develop a cross-linker-free bioink with optimal rheology for polymer extrusion, aqueous, and nontoxic processing and offers structural support for cartilage regeneration. Toward this, we use the self-gelling ability of silk fibroin blends (Bombyx mori and Philosamia ricini) along with gelatin as a bulking agent. Silk and gelatin interact with each other through entanglement and physical cross-linking. The ink was rheologically and structurally optimized for printing efficiency in printing grid-like structures. The printed 3D constructs show optimal swelling capability, degradability, and compressive strength. Further, the construct supports the growth and proliferation of encapsulated chondrocytes and formation of the cartilaginous extracellular matrix as indicated by the increased sulfated glycosaminoglycan and collagen contents. This was further corroborated by the upregulation of chondrogenic gene expression with minimal hypertrophy of chondrocytes. Additionally, the construct demonstrates in vitro and in vivo biocompatibility. Notably, the ink demonstrates good print fidelity for printing anatomical structures such as the human ear enabled by optimized extrudability at adequate resolution. Altogether, the results indicate that the developed cross-linker-free silk-gelatin polymer-based bioink demonstrated high potential for its 3D bioprintability and application in cartilage tissue engineering.


Assuntos
Cartilagem , Condrócitos , Fibroínas/química , Gelatina/química , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Cartilagem/química , Cartilagem/citologia , Cartilagem/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Suínos
20.
ACS Biomater Sci Eng ; 5(10): 5240-5254, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33455229

RESUMO

In this study, the effect of cellular cross-talk on modulation of chondrogenesis and hypertrophy while minimizing the usage of articular chondrocytes (ACs) has been investigated. Herein, co-culture of ACs with adipose-derived human mesenchymal stem cells (ADhMSCs) was employed for cross-talk within silk fibroin (SF)-based three-dimensional (3D) scaffolds. The co-culture model was developed by co-culturing four different ratios of ADhMSCs to ACs: 1:0, 3:1, 1:1, and 0:1 on porous 3D SF scaffolds for 21 days. The co-culture groups were cultured in defined media without adding any exogenous growth factors except the monoculture group, ADhMSC-only controls. The co-cultured constructs indicated significantly higher cellular viability and proliferation than the control monoculture groups. The supernatants of co-culture groups indicated significantly higher levels of TGF-ß1 and IL-10, which confirmed the production of the morphogens/signaling molecules by chondrocytes for induction of ADhMSCs differentiation toward the chondrogenic phenotype. Biochemical assays indicated enhanced accumulation of sulfated glycosaminoglycans, collagen, and high DNA content along with high cellularity in co-culture groups than chondrocyte-only controls. Co-culture groups revealed synergistic interactions between cells as indicated by the interaction index value ranging from 2-3. Furthermore, upregulation of putative chondrogenic markers-aggrecan, sox-9, and collagen II, and significantly reduced expression of hypertrophic genes-collagen type X and MMP-13 was revealed in co-culture constructs. Histological and immunohistochemical staining also demonstrated even distribution and deposition of ECM in co-cultured constructs. Taken together, this work presents the potential of the developed 3D co-culture model toward modulation of chondrogenesis and hypertrophy via 3D microenvironment induced by physicochemical and biological properties of SF scaffolds, synergistic interactions between cells, and paracrine signaling in the co-culture system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA