Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Sci Rep ; 14(1): 5434, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443569

RESUMO

This study presents the K-means clustering-based grey wolf optimizer, a new algorithm intended to improve the optimization capabilities of the conventional grey wolf optimizer in order to address the problem of data clustering. The process that groups similar items within a dataset into non-overlapping groups. Grey wolf hunting behaviour served as the model for grey wolf optimizer, however, it frequently lacks the exploration and exploitation capabilities that are essential for efficient data clustering. This work mainly focuses on enhancing the grey wolf optimizer using a new weight factor and the K-means algorithm concepts in order to increase variety and avoid premature convergence. Using a partitional clustering-inspired fitness function, the K-means clustering-based grey wolf optimizer was extensively evaluated on ten numerical functions and multiple real-world datasets with varying levels of complexity and dimensionality. The methodology is based on incorporating the K-means algorithm concept for the purpose of refining initial solutions and adding a weight factor to increase the diversity of solutions during the optimization phase. The results show that the K-means clustering-based grey wolf optimizer performs much better than the standard grey wolf optimizer in discovering optimal clustering solutions, indicating a higher capacity for effective exploration and exploitation of the solution space. The study found that the K-means clustering-based grey wolf optimizer was able to produce high-quality cluster centres in fewer iterations, demonstrating its efficacy and efficiency on various datasets. Finally, the study demonstrates the robustness and dependability of the K-means clustering-based grey wolf optimizer in resolving data clustering issues, which represents a significant advancement over conventional techniques. In addition to addressing the shortcomings of the initial algorithm, the incorporation of K-means and the innovative weight factor into the grey wolf optimizer establishes a new standard for further study in metaheuristic clustering algorithms. The performance of the K-means clustering-based grey wolf optimizer is around 34% better than the original grey wolf optimizer algorithm for both numerical test problems and data clustering problems.

3.
Cell Commun Signal ; 22(1): 119, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347590

RESUMO

BACKGROUND: Breast cancer cells (BCCs) can remain undetected for decades in dormancy. These quiescent cells are similar to cancer stem cells (CSCs); hence their ability to initiate tertiary metastasis. Dormancy can be regulated by components of the tissue microenvironment such as bone marrow mesenchymal stem cells (MSCs) that release exosomes to dedifferentiate BCCs into CSCs. The exosomes cargo includes histone 3, lysine 4 (H3K4) methyltransferases - KMT2B and KMT2D. A less studied mechanism of CSC maintenance is the process of cell-autonomous regulation, leading us to examine the roles for KMT2B and KMT2D in sustaining CSCs, and their potential as drug targets. METHODS: Use of pharmacological inhibitor of H3K4 (WDR5-0103), knockdown (KD) of KMT2B or KMT2D in BCCs, real time PCR, western blot, response to chemotherapy, RNA-seq, and flow cytometry for circulating markers of CSCs and DNA hydroxylases in BC patients. In vivo studies using a dormancy model studied the effects of KMT2B/D to chemotherapy. RESULTS: H3K4 methyltransferases sustain cell autonomous regulation of CSCs, impart chemoresistance, maintain cycling quiescence, and reduce migration and proliferation of BCCs. In vivo studies validated KMT2's role in dormancy and identified these genes as potential drug targets. DNA methylase (DNMT), predicted within a network with KMT2 to regulate CSCs, was determined to sustain circulating CSC-like in the blood of patients. CONCLUSION: H3K4 methyltransferases and DNA methylation mediate cell autonomous regulation to sustain CSC. The findings provide crucial insights into epigenetic regulatory mechanisms underlying BC dormancy with KMT2B and KMT2D as potential therapeutic targets, along with standard care. Stem cell and epigenetic markers in circulating BCCs could monitor treatment response and this could be significant for long BC remission to partly address health disparity.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/patologia , Histonas/genética , Epigênese Genética , Metiltransferases/genética , DNA , Neoplasias/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
Aging (Albany NY) ; 15(9): 3230-3248, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36996499

RESUMO

Breast cancer (BC) stem cells (CSCs) resist treatment and can exist as dormant cells in tissues such as the bone marrow (BM). Years before clinical diagnosis, BC cells (BCCs) could migrate from the primary site where the BM niche cells facilitate dedifferentiation into CSCs. Additionally, dedifferentiation could occur by cell autonomous methods. Here we studied the role of Msi 1, a RNA-binding protein, Musashi I (Msi 1). We also analyzed its relationship with the T-cell inhibitory molecule programmed death-ligand 1 (PD-L1) in CSCs. PD-L1 is an immune checkpoint that is a target in immune therapy for cancers. Msi 1 can support BCC growth through stabilization of oncogenic transcripts and modulation of stem cell-related gene expression. We reported on a role for Msi 1 to maintain CSCs. This seemed to occur by the differentiation of CSCs to more matured BCCs. This correlated with increased transition from cycling quiescence and reduced expression of stem cell-linked genes. CSCs co-expressed Msi 1 and PD-L1. Msi 1 knockdown led to a significant decrease in CSCs with undetectable PD-L1. This study has implications for Msi 1 as a therapeutic target, in combination with immune checkpoint inhibitor. Such treatment could also prevent dedifferentiation of breast cancer to CSCs, and to reverse tumor dormancy. The proposed combined treatment might be appropriate for other solid tumors.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Feminino , Antígeno B7-H1/genética , Medula Óssea/patologia , Neoplasias da Mama/patologia
5.
Aging (Albany NY) ; 13(21): 23981-24016, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762598

RESUMO

This study addresses the potential to reverse age-associated morbidity by establishing methods to restore the aged hematopoietic system. Parabiotic animal models indicated that young secretome could restore aged tissues, leading us to establish a heterochronic transwell system with aged mobilized peripheral blood (MPB), co-cultured with young MPB or umbilical cord blood (UCB) cells. Functional studies and omics approaches indicate that the miRNA cargo of microvesicles (MVs) restores the aged hematopoietic system. The in vitro findings were validated in immune deficient (NSG) mice carrying an aged hematopoietic system, improving aged hallmarks such as increased lymphoid:myeloid ratio, decreased inflammation and cellular senescence. Elevated MYC and E2F pathways, and decreased p53 were key to hematopoietic restoration. These processes require four restorative miRs that target the genes for transcription/differentiation, namely PAX and phosphatase PPMIF. These miRs when introduced in aged cells were sufficient to restore the aged hematopoietic system in NSG mice. The aged MPBs were the drivers of their own restoration, as evidenced by the changes from distinct baseline miR profiles in MPBs and UCB to comparable expressions after exposure to aged MPBs. Restorative natural killer cells eliminated dormant breast cancer cells in vivo, indicating the broad relevance of this cellular paradigm - preventing and reversing age-associated disorders such as clearance of early malignancies and enhanced responses to vaccine and infection.


Assuntos
Células da Medula Óssea , Micropartículas Derivadas de Células , Senescência Celular/fisiologia , Hematopoese/fisiologia , Adulto , Idoso , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/fisiologia , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/fisiologia , Feminino , Sangue Fetal/citologia , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Secretoma , Adulto Jovem
6.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34078741

RESUMO

The challenge for treating breast cancer (BC) is partly due to long-term dormancy driven by cancer stem cells (CSCs) capable of evading immune response and resist chemotherapy. BC cells show preference for the BM, resulting in poor prognosis. CSCs use connexin 43 (Cx43) to form gap junctional intercellular communication with BM niche cells, fibroblasts, and mesenchymal stem cells (MSCs). However, Cx43 is an unlikely target to reverse BC dormancy because of its role as a hematopoietic regulator. We found N-cadherin (CDH2) and its associated pathways as potential drug targets. CDH2, highly expressed in CSCs, interacts intracellularly with Cx43, colocalizes with Cx43 in BC cells within BM biopsies of patients, and is required for Cx43-mediated gap junctional intercellular communication with BM niche cells. Notably, CDH2 and anti-apoptotic pathways maintained BC dormancy. We thereby propose these pathways as potential pharmacological targets to prevent dormancy and chemosensitize resistant CSCs.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Conexina 43/metabolismo , Antígenos CD/genética , Medula Óssea/metabolismo , Caderinas/genética , Caderinas/fisiologia , Conexina 43/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Junções Comunicantes/metabolismo , Junções Comunicantes/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral/fisiologia
7.
Cancer Res ; 81(6): 1567-1582, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33500249

RESUMO

In the bone marrow (BM), breast cancer cells (BCC) can survive in dormancy for decades as cancer stem cells (CSC), resurging as tertiary metastasis. The endosteal region where BCCs exist as CSCs poses a challenge to target them, mostly due to the coexistence of endogenous hematopoietic stem cells. This study addresses the early period of dormancy when BCCs enter BM at the perivascular region to begin the transition into CSCs, which we propose as the final step in dormancy. A two-step process comprises the Wnt-ß-catenin pathway mediating BCC dedifferentiation into CSCs at the BM perivascular niche. At this site, BCCs responded to two types of mesenchymal stem cell (MSC)-released extracellular vesicles (EV) that may include exosomes. Early released EVs began the transition into cycling quiescence, DNA repair, and reorganization into distinct BCC subsets. After contact with breast cancer, the content of EVs changed (primed) to complete dedifferentiation into a more homogeneous population with CSC properties. BCC progenitors (Oct4alo), which are distant from CSCs in a hierarchical stratification, were sensitive to MSC EVs. Despite CSC function, Oct4alo BCCs expressed multipotent pathways similar to CSCs. Oct4alo BCCs dedifferentiated and colocalized with MSCs (murine and human BM) in vivo. Overall, these findings elucidate a mechanism of early dormancy at the BM perivascular region and provide evidence of epigenome reorganization as a potential new therapy for breast cancer. SIGNIFICANCE: These findings describe how the initial process of dormancy and dedifferentiation of breast cancer cells at the bone marrow perivascular niche requires mesenchymal stem cell-derived exosomes, indicating a potential target for therapeutic intervention.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Desdiferenciação Celular , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/patologia , Adolescente , Adulto , Animais , Biópsia , Reparo do DNA , Exossomos/metabolismo , Feminino , Voluntários Saudáveis , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Adulto Jovem
8.
J Contemp Dent Pract ; 22(11): 1292-1296, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35343456

RESUMO

AIM: Aim of the present research was to investigate the effectiveness of various fluoride-releasing dental restorative agents in preventing demineralization of enamel. MATERIALS AND METHODS: Eighty human mandibular permanent molar teeth constituted the study group. All samples were subjected to storage in thymol, after which they were taken out to prepare alike proximal box in each. Inductions of artificial enamel surface lesions were done by placing the teeth in demineralizing solution for 96 hours. Subsequently, all 80 molars were randomly assigned to any of the four groups (i.e., 20 in every individual group) according to the restoration as group A: giomer (composite resin containing surface pre-reacted glass-ionomer fillers), group B: compomer (polyacid-modified composite resin), group C: resin-modified glass-ionomer cement (RMGIC), group D: fluoride-releasing composite. After this, the pH cycling was performed, and the samples were subjected to examination beneath scanning electron microscope (SEM). RESULTS: Higher mean areas of remineralization were noted when RMGIC (96.34 ± 0.06) was used followed by the compomer (109.52 ± 0.17), giomer (118.39 ± 0.82), and the fluoride-releasing composite group (129.27 ± 0.31) in that order. A statistically significant difference was seen amid the investigational groups that utilized different restorative agents (p <0.001). A pairwise evaluation that was performed revealed that except for the giomer group and the compomer group, a statistically significant difference (p <0.001) was found among the experimental groups. CONCLUSION: This research infers that the RMGIC-treated samples exhibited significantly superior performance in preventing enamel demineralization in comparison to compomer, giomer as well as fluoride-releasing composites. CLINICAL SIGNIFICANCE: One among the highly frequently employed anticariogenic materials is fluorides. Owing to this characteristic, they are integrated into numerous restorative substances. Nevertheless, the quantity and speed of fluoride release differ in different agents, which translates to the efficacy of the restorative agent in avoiding demineralization about the restoration.


Assuntos
Fluoretos , Desmineralização do Dente , Esmalte Dentário/patologia , Fluoretos/uso terapêutico , Cimentos de Ionômeros de Vidro/química , Cimentos de Ionômeros de Vidro/uso terapêutico , Humanos , Microscopia Eletrônica de Varredura , Desmineralização do Dente/prevenção & controle
9.
Trends Cancer ; 6(4): 348-357, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209448

RESUMO

Breast cancer (BC) relapse, despite clinical advancement, remains one of the biggest issues in the field. Intercellular communication, specifically via connexin (Cx)-mediated gap junctions (GJs), play a key role in the long-term survival of these, treatment-resistant breast cancer stem cells (CSCs), allowing for relapse. Both basic and clinical evidence reveal dual roles for GJs, in tumor suppression, generally referred to as dormancy, and progression and metastasis. GJ intercellular communication (GJIC) can be mediated by multiple types of Cxs, depending on the organ to which the BC cells metastasize. This review expands on the differential expression of Cx-mediated GJIC between CSCs and niche cells within a given microenvironment.


Assuntos
Neoplasias da Mama/patologia , Conexinas/metabolismo , Junções Comunicantes/patologia , Recidiva Local de Neoplasia/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Mama/crescimento & desenvolvimento , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Conexinas/antagonistas & inibidores , Conexinas/efeitos dos fármacos , Conexinas/imunologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/imunologia , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/patologia , Camundongos , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/prevenção & controle , Células-Tronco Neoplásicas/patologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
10.
J Immunol ; 204(4): 879-891, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31924647

RESUMO

Hematopoiesis is tightly regulated by the bone marrow (BM) niche. The niche is robust, allowing for the return of hematopoietic homeostasis after insults such as infection. Hematopoiesis is partly regulated by soluble factors, such as neuropeptides, substance P (SP), and neurokinin A (NK-A), which mediate hematopoietic stimulation and inhibition, respectively. SP and NK-A are derived from the Tac1 gene that is alternately spliced into four variants. The hematopoietic effects of SP and NK-A are mostly mediated via BM stroma. Array analyses with 2400 genes indicated distinct changes in SP-stimulated BM stroma. Computational analyses indicated networks of genes with hematopoietic regulation. Included among these networks is the high-mobility group box 1 gene (HMGB1), a nonhistone chromatin-associated protein. Validation studies indicated that NK-A could reverse SP-mediated HMGB1 decrease. Long-term culture-initiating cell assay, with or without NK-A receptor antagonist (NK2), showed a suppressive effect of HMGB1 on hematopoietic progenitors and increase in long-term culture-initiating cell assay cells (primitive hematopoietic cells). These effects occurred partly through NK-A. NSG mice with human hematopoietic system injected with the HMGB1 antagonist glycyrrhizin verified the in vitro effects of HMGB1. Although the effects on myeloid lineage were suppressed, the results suggested a more complex effect on the lymphoid lineage. Clonogenic assay for CFU- granulocyte-monocyte suggested that HMGB1 may be required to prevent hematopoietic stem cell exhaustion to ensure immune homeostasis. In summary, this study showed how HMGB1 is linked to SP and NK-A to protect the most primitive hematopoietic cell and also to maintain immune/hematopoietic homeostasis.


Assuntos
Proteína HMGB1/metabolismo , Hematopoese/genética , Neuroimunomodulação/genética , Neurocinina A/metabolismo , Substância P/metabolismo , Adolescente , Adulto , Processamento Alternativo , Animais , Benzamidas/farmacologia , Biópsia , Medula Óssea/metabolismo , Medula Óssea/patologia , Transplante de Medula Óssea , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/imunologia , Células HEK293 , Hematopoese/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Neuroimunomodulação/imunologia , Neurocinina A/antagonistas & inibidores , Análise de Sequência com Séries de Oligonucleotídeos , Piperidinas/farmacologia , Cultura Primária de Células , Taquicininas/genética , Quimeras de Transplante , Adulto Jovem
11.
Front Pharmacol ; 10: 134, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30853911

RESUMO

Glioblastoma multiforme (GBM) is a fatal malignancy of the central nervous system, commonly associated with chemoresistance. The alkylating agent Temozolomide (TMZ) is the front-line chemotherapeutic agent and has undergone intense studies on resistance. These studies reported on mismatch repair gene upregulation, ABC-targeted drug efflux, and cell cycle alterations. The mechanism by which TMZ induces cell cycle arrest has not been well-established. TMZ-resistant GBM cells have been linked to microRNA (miRNA) and exosomes. A cell cycle miRNA array identified distinct miRNAs only in exosomes from TMZ-resistant GBM cell lines and primary spheres. We narrowed the miRs to miR-93 and -193 and showed in computational analyses that they could target Cyclin D1. Since Cyclin D1 is a major regulator of cell cycle progression, we performed cause-effect studies and showed a blunting effects of miR-93 and -193 in Cyclin D1 expression. These two miRs also decreased cell cycling quiescence and induced resistance to TMZ. Taken together, our data provide a mechanism by which GBM cells can exhibit TMZ-induced resistance through miRNA targeting of Cyclin D1. The data provide a number of therapeutic approaches to reverse chemoresistance at the miRNA, exosomal and cell cycle points.

12.
Biochimie ; 155: 92-103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29859990

RESUMO

The secretome produced by cells within the bone marrow is significant to homeostasis. The bone marrow, a well-studied organ, has multiple niches with distinct roles for supporting stem cell functions. Thus, an understanding of mediators involved in the regulation of stem cells could serve as a model for clinical problems and solutions such as tissue repair and regeneration. The exosome secretome of bone marrow stem cells is a developing area of research with respect to the regenerative potential by bone marrow cell, particularly the mesenchymal stem cells. The bone marrow niche regulates endogenous processes such as hematopoiesis but could also support the survival of tumors such as facilitating the cancer stem cells to exist in dormancy for decades. The bone marrow-derived secretome will be critical to future development of therapeutic strategies for oncologic diseases, in addition to regenerative medicine. This article discusses the importance for parallel studies to determine how the same secretome may compromise safety during the use of stem cells in regenerative medicine.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Nicho de Células-Tronco , Animais , Medula Óssea/patologia , Sobrevivência Celular , Humanos , Células-Tronco Mesenquimais/patologia , Neoplasias/patologia
13.
Sci Rep ; 8(1): 367, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321622

RESUMO

This study proposes that a novel developmental hierarchy of breast cancer (BC) cells (BCCs) could predict treatment response and outcome. The continued challenge to treat BC requires stratification of BCCs into distinct subsets. This would provide insights on how BCCs evade treatment and adapt dormancy for decades. We selected three subsets, based on the relative expression of octamer-binding transcription factor 4 A (Oct4A) and then analysed each with Affymetrix gene chip. Oct4A is a stem cell gene and would separate subsets based on maturation. Data analyses and gene validation identified three membrane proteins, TMEM98, GPR64 and FAT4. BCCs from cell lines and blood from BC patients were analysed for these three membrane proteins by flow cytometry, along with known markers of cancer stem cells (CSCs), CD44, CD24 and Oct4, aldehyde dehydrogenase 1 (ALDH1) activity and telomere length. A novel working hierarchy of BCCs was established with the most immature subset as CSCs. This group was further subdivided into long- and short-term CSCs. Analyses of 20 post-treatment blood indicated that circulating CSCs and early BC progenitors may be associated with recurrence or early death. These results suggest that the novel hierarchy may predict treatment response and prognosis.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Biologia Computacional , Perfilação da Expressão Gênica , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Família Aldeído Desidrogenase 1 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Biologia Computacional/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunofenotipagem , Isoenzimas/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Estadiamento de Neoplasias , Retinal Desidrogenase/metabolismo , Homeostase do Telômero
14.
Cell Immunol ; 326: 33-41, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779846

RESUMO

The immune modulatory properties of mesenchymal stem cells (MSCs) are mostly controlled by the particular microenvironment. Cancer stem cells (CSCs), which can initiate a clinical tumor, have been the subject of intense research. This review article discusses investigative studies of the roles of MSCs on cancer biology including on CSCs, and the potential as drug delivery to tumors. An understanding of how MSCs behave in the tumor microenvironment to facilitate the survival of tumor cells would be crucial to identify drug targets. More importantly, since CSCs survive for decades in dormancy for later resurgence, studies are presented to show how MSCs could be involved in maintaining dormancy. Although the mechanism by which CSCs survive is complex, this article focus on the cellular involvement of MSCs with regard to immune responses. We discuss the immunomodulatory mechanisms of MSC-CSC interaction in the context of therapeutic outcomes in oncology. We also discuss immunotherapy as a potential to circumventing this immune modulation.


Assuntos
Neoplasias da Mama/imunologia , Comunicação Celular/imunologia , Células-Tronco Mesenquimais/imunologia , Células-Tronco Neoplásicas/imunologia , Microambiente Tumoral/imunologia , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Sobrevivência Celular/imunologia , Humanos , Modelos Imunológicos , Transdução de Sinais/imunologia
15.
Cancer Res ; 76(19): 5832-5844, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569215

RESUMO

Dormant breast cancers resurge as metastatic disease after a long dormancy period in the bone marrow, where cancer cells interact with mesenchymal stem cells (MSC). However, the nature of early interactions between breast cancer cells and MSCs in the bone marrow microenvironment that facilitate adaptation to a quiescent state remains poorly understood. Here, we report that breast cancer cells prime MSC to release exosomes containing distinct miRNA contents, such as miR-222/223, which in turn promotes quiescence in a subset of cancer cells and confers drug resistance. Building on these results, we developed a novel, nontoxic therapeutic strategy to target dormant breast cancer cells based on systemic administration of MSC loaded with antagomiR-222/223. In an immunodeficient mouse model of dormant breast cancer, this therapy sensitized breast cancer cells to carboplatin-based therapy and increased host survival. Overall, our findings illuminate the nature of the regulatory interactions between breast cancer cells and MSCs in the evolution of tumor dormancy and resurgence in the micrometastatic microenvironment of the bone marrow. Cancer Res; 76(19); 5832-44. ©2016 AACR.


Assuntos
Medula Óssea/patologia , Neoplasias da Mama/patologia , Exossomos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Carboplatina/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/antagonistas & inibidores , MicroRNAs/fisiologia
16.
Cancer Lett ; 380(1): 289-95, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-26582656

RESUMO

The tumor microenvironment has a critical role in the survival and decision of the cancer cells. These include support by enhanced angiogenesis, and metastasis or adaptation of dormancy. This article discusses methods by which the microenvironment sustains the tumor. This process is important as it will identify avenues of drug targets. Non-coding RNAs (ncRNAs) are evolving as key mediators in the interaction between the cancer cells and the microenvironment. Thus, the question is how to develop methods to effectively block the effects of the ncRNA and/or to introduce them to prevent metastasis, dormancy or to reverse dormancy. We focused on the advantages of using mesenchymal stem cells (MSCs) for RNA delivery. MSCs can be available as "off-the-shelf" cells. Thus far, MSCs are shown to be safe when transplanted across allogeneic barriers. We discussed the various methods by which MSCs can interact with cancer cells to deliver ncRNA or antagomirs. We also include the advances and possible confounds of using these methods. Overall, this review article provides a potential method by which MSCs can be used for effective delivery of nucleic acid to treat cancer.


Assuntos
Neoplasias da Mama/metabolismo , Comunicação Celular , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA não Traduzido/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Exossomos/metabolismo , Feminino , Junções Comunicantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Terapia Genética/métodos , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Neoplásicas/patologia , Fenótipo , RNA não Traduzido/genética , Transdução de Sinais
17.
Cancer Lett ; 380(1): 263-71, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-26546045

RESUMO

Despite the success in detecting breast cancer (BC) early and, with aggressive therapeutic intervention, BC remains a clinical problem. The bone marrow (BM) is a favorable metastatic site for breast cancer cells (BCCs). In BM, the survival of BCCs is partly achieved by the supporting microenvironment, including the presence of immune suppressive cells such as mesenchymal stem cells (MSCs). The heterogeneity of BCCs brings up the question of how each subset interacts with the BM microenvironment. The cancer stem cells (CSCs) survive in the BM as cycling quiescence cells and, forming gap junctional intercellular communication (GJIC) with the hematopoietic supporting stromal cells and MSCs. This type of communication has been identified close to the endosteum. Additionally, dormancy can occur by soluble mediators such as cytokines and also by the exchange of exosomes. These latter mechanisms are reviewed in the context of metastasis of BC to the BM for transition as dormant cells. The article also discusses how immune cells such as macrophages and regulatory T-cells facilitate BC dormancy. The challenges of studying BC dormancy in 2-dimensional (2-D) system are also incorporated by proposing 3-D system by engineering methods to recapitulate the BM microenvironment.


Assuntos
Células da Medula Óssea/patologia , Neoplasias da Medula Óssea/secundário , Neoplasias da Mama/patologia , Proliferação de Células , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral , Animais , Antineoplásicos/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Neoplasias da Medula Óssea/tratamento farmacológico , Neoplasias da Medula Óssea/imunologia , Neoplasias da Medula Óssea/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Neoplasias da Mama/metabolismo , Comunicação Celular , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais
18.
Cancer Lett ; 356(2 Pt A): 149-55, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24632530

RESUMO

Currently, animal models are used to test the efficacy of tumor treatment. A significant reduction of tumor mass is lauded as great improvement. As we begin the 21st century, one wonders if this is sufficient and acceptable for cancer treatment. Although the presence of cancer stem cell (CSCs) is not a new phenomenon, their role in the initiation of the tumor for clinical resurgence is mostly ignored when testing drugs. The current treatment then poses a major limitation to aggressively target the cells most responsible for tumor initiation and resurgence. The review does not trivialize the problem since it is acknowledged that the tumors and cells within the tissue microenvironment would interact through complex mechanisms. It is quite possible that the interaction by CSCs and the microenvironment will vary, depending on the tissue, e.g., bone marrow versus brain. Research studies are needed to investigate if CSCs from the same organ differ after migrating to other tissues. If so, this will pose an economic dilemma for targeted drug development. It will not be feasible to develop drugs for each organ. Besides, the cost, there could be problems to effectively deliver the drugs to all organs, problems to assess drug distribution to particular tissues and toxicity for specific drugs. If multiple drugs are required to eradicate CSCs in different tissues, there is a problem of possible untoward effect for the simultaneous delivery of multiple drugs to a single cancer patient. As new drugs are developed, the investigators will need to pay attention for dedifferentiation of non-CSCs to CSCs. The metabolic pathways will have to be given equal attention as the stem cells genes since their pathways might show major differences rather than the stem cells genes, which are shared by the normal stem cells.


Assuntos
Desenho de Fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Carga Tumoral , Animais , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Neoplasias Experimentais/patologia , Microambiente Tumoral
19.
Stem Cells Int ; 2013: 241048, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24385986

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells found in both fetal and adult tissues. MSCs show promise for cellular therapy for several disorders such as those associated with inflammation. In adults, MSCs primarily reside in the bone marrow (BM) and adipose tissues. In BM, MSCs are found at low frequency around blood vessels and trabecula. MSCs are attractive candidates for regenerative medicine given their ease in harvesting and expansion and their unique ability to bypass the immune system in an allogeneic host. Additionally, MSCs exert pathotropism by their ability to migrate to diseased regions. Despite the "attractive" properties of MSCs, their translation to patients requires indepth research. "Off-the-shelf" MSCs are proposed for use in an allogeneic host. Thus, the transplanted MSCs, when placed in a foreign host, could receive cue from the microenvironment for cellular transformation. An important problem with the use of MSCs involves their ability to facilitate the support of breast and other cancers as carcinoma-associated fibroblasts. MSCs could show distinct effect on each subset of cancer cells. This could lead to untoward effect during MSC therapy since the MSCs would be able to interact with undiagnosed cancer cells, which might be in a dormant state. Based on these arguments, further preclinical research is needed to ensure patient safety with MSC therapy. Here, we discuss the basic biology of MSCs, discuss current applications, and provide evidence why it is important to understand MSC biology in the context of diseased microenvironment for safe application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA