Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Discov Today ; 28(11): 103797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806386

RESUMO

Our understanding of drug-microbe relationships has evolved from viewing microbes as mere drug producers to a dynamic, modifiable system where they can serve as drugs or targets of precision pharmacology. This review highlights recent findings on the gut microbiome, particularly focusing on four aspects of research: (i) drugs for bugs, covering recent strategies for targeting gut pathogens; (ii) bugs as drugs, including probiotics; (iii) drugs from bugs, including postbiotics; and (iv) bugs and drugs, discussing additional types of drug-microbe interactions. This review provides a perspective on future translational research, including efficient companion diagnostics in pharmaceutical interventions.


Assuntos
Microbioma Gastrointestinal , Probióticos , Antibacterianos/farmacologia
2.
J Pers Med ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013186

RESUMO

Neuropsychiatric diseases and obesity are major components of morbidity and health care costs, with genetic, lifestyle, and gut microbiome factors linked to their etiology. Dietary and weight-loss interventions can help improve mental health, but there is conflicting evidence regarding their efficacy; and moreover, there is substantial interindividual heterogeneity that needs to be understood. We aimed to identify genetic and gut microbiome factors that explain interindividual differences in mental health improvement after a dietary and lifestyle intervention for weight loss. We recruited 369 individuals participating in Digbi Health's personalized digital therapeutics care program and evaluated the association of 23 genetic scores, the abundance of 178 gut microbial genera, and 42 bacterial pathways with mental health. We studied the presence/absence of anxiety or depression, or sleep problems at baseline and improvement on anxiety, depression, and insomnia after losing at least 2% body weight. Participants lost on average 5.4% body weight and >95% reported improving mental health symptom intensity. There were statistically significant correlations between: (a) genetic scores with anxiety or depression at baseline, gut microbial functions with sleep problems at baseline, and (b) genetic scores and gut microbial taxa and functions with anxiety, depression, and insomnia improvement. Our results are concordant with previous findings, including the association between anxiety or depression at baseline with genetic scores for alcohol use disorder and major depressive disorder. As well, our results uncovered new associations in line with previous epidemiological literature. As evident from previous literature, we also observed associations of gut microbial signatures with mental health including short-chain fatty acids and bacterial neurotoxic metabolites specifically with depression. Our results also show that microbiome and genetic factors explain self-reported mental health status and improvement better than demographic variables independently. The genetic and microbiome factors identified in this study provide the basis for designing and personalizing dietary interventions to improve mental health.

3.
Front Microbiol ; 13: 826916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391720

RESUMO

Diet and lifestyle-related illnesses including functional gastrointestinal disorders (FGIDs) and obesity are rapidly emerging health issues worldwide. Research has focused on addressing FGIDs via in-person cognitive-behavioral therapies, diet modulation and pharmaceutical intervention. Yet, there is paucity of research reporting on digital therapeutics care delivering weight loss and reduction of FGID symptom severity, and on modeling FGID status and symptom severity reduction including personalized genomic SNPs and gut microbiome signals. Our aim for this study was to assess how effective a digital therapeutics intervention personalized on genomic SNPs and gut microbiome signals was at reducing symptomatology of FGIDs on individuals that successfully lost body weight. We also aimed at modeling FGID status and FGID symptom severity reduction using demographics, genomic SNPs, and gut microbiome variables. This study sought to train a logistic regression model to differentiate the FGID status of subjects enrolled in a digital therapeutics care program using demographic, genetic, and baseline microbiome data. We also trained linear regression models to ascertain changes in FGID symptom severity of subjects at the time of achieving 5% or more of body weight loss compared to baseline. For this we utilized a cohort of 177 adults who reached 5% or more weight loss on the Digbi Health personalized digital care program, who were retrospectively surveyed about changes in symptom severity of their FGIDs and other comorbidities before and after the program. Gut microbiome taxa and demographics were the strongest predictors of FGID status. The digital therapeutics program implemented, reduced the summative severity of symptoms for 89.42% (93/104) of users who reported FGIDs. Reduction in summative FGID symptom severity and IBS symptom severity were best modeled by a mixture of genomic and microbiome predictors, whereas reduction in diarrhea and constipation symptom severity were best modeled by microbiome predictors only. This preliminary retrospective study generated diagnostic models for FGID status as well as therapeutic models for reduction of FGID symptom severity. Moreover, these therapeutic models generate testable hypotheses for associations of a number of biomarkers in the prognosis of FGIDs symptomatology.

4.
J Med Internet Res ; 23(5): e25401, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33849843

RESUMO

BACKGROUND: The COVID-19 pandemic has highlighted the urgency of addressing an epidemic of obesity and associated inflammatory illnesses. Previous studies have demonstrated that interactions between single-nucleotide polymorphisms (SNPs) and lifestyle interventions such as food and exercise may vary metabolic outcomes, contributing to obesity. However, there is a paucity of research relating outcomes from digital therapeutics to the inclusion of genetic data in care interventions. OBJECTIVE: This study aims to describe and model the weight loss of participants enrolled in a precision digital weight loss program informed by the machine learning analysis of their data, including genomic data. It was hypothesized that weight loss models would exhibit a better fit when incorporating genomic data versus demographic and engagement variables alone. METHODS: A cohort of 393 participants enrolled in Digbi Health's personalized digital care program for 120 days was analyzed retrospectively. The care protocol used participant data to inform precision coaching by mobile app and personal coach. Linear regression models were fit of weight loss (pounds lost and percentage lost) as a function of demographic and behavioral engagement variables. Genomic-enhanced models were built by adding 197 SNPs from participant genomic data as predictors and refitted using Lasso regression on SNPs for variable selection. Success or failure logistic regression models were also fit with and without genomic data. RESULTS: Overall, 72.0% (n=283) of the 393 participants in this cohort lost weight, whereas 17.3% (n=68) maintained stable weight. A total of 142 participants lost 5% bodyweight within 120 days. Models described the impact of demographic and clinical factors, behavioral engagement, and genomic risk on weight loss. Incorporating genomic predictors improved the mean squared error of weight loss models (pounds lost and percent) from 70 to 60 and 16 to 13, respectively. The logistic model improved the pseudo R2 value from 0.193 to 0.285. Gender, engagement, and specific SNPs were significantly associated with weight loss. SNPs within genes involved in metabolic pathways processing food and regulating fat storage were associated with weight loss in this cohort: rs17300539_G (insulin resistance and monounsaturated fat metabolism), rs2016520_C (BMI, waist circumference, and cholesterol metabolism), and rs4074995_A (calcium-potassium transport and serum calcium levels). The models described greater average weight loss for participants with more risk alleles. Notably, coaching for dietary modification was personalized to these genetic risks. CONCLUSIONS: Including genomic information when modeling outcomes of a digital precision weight loss program greatly enhanced the model accuracy. Interpretable weight loss models indicated the efficacy of coaching informed by participants' genomic risk, accompanied by active engagement of participants in their own success. Although large-scale validation is needed, our study preliminarily supports precision dietary interventions for weight loss using genetic risk, with digitally delivered recommendations alongside health coaching to improve intervention efficacy.


Assuntos
Peso Corporal/genética , Redução de Peso/fisiologia , Programas de Redução de Peso/métodos , COVID-19/epidemiologia , Estudos de Coortes , Epigenômica/métodos , Feminino , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos , SARS-CoV-2/isolamento & purificação
5.
Bioinformatics ; 26(19): 2368-74, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20663848

RESUMO

MOTIVATION: We investigate the problem of exact repeat detection on large genomic sequences. Most existing approaches based on suffix trees and suffix arrays (SAs) are limited either to small sequences or those that are memory resident. We introduce RepMaestro, a software that adapts existing in-memory-enhanced SA algorithms to enable them to scale efficiently to large sequences that are disk resident. Supermaximal repeats, maximal unique matches (MuMs) and pairwise branching tandem repeats have been used to demonstrate the practicality of our approach; the first such study to use an enhanced SA to detect these repeats in large genome sequences. RESULTS: The detection of supermaximal repeats was observed to be up to two times faster than Vmatch, but more importantly, was shown to scale efficiently to large genome sequences that Vmatch could not process due to memory constraints (4 GB). Similar results were observed for the detection of MuMs, with RepMaestro shown to scale well and also perform up to six times faster than Vmatch. For tandem repeats, RepMaestro was found to be slower but could nonetheless scale to large disk-resident sequences. These results are a significant advance in the quest of scalable repeat detection. Software availability: RepMaestro is available at http://www.naskitis.com.


Assuntos
Genoma , Software , Algoritmos , Sequência de Bases , Bases de Dados Genéticas , Genômica/métodos
6.
Bioinformatics ; 25(17): 2157-63, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19542152

RESUMO

MOTIVATION: Second-generation sequencing technologies produce a massive amount of short reads in a single experiment. However, sequencing errors can cause major problems when using this approach for de novo sequencing applications. Moreover, existing error correction methods have been designed and optimized for shotgun sequencing. Therefore, there is an urgent need for the design of fast and accurate computational methods and tools for error correction of large amounts of short read data. RESULTS: We present SHREC, a new algorithm for correcting errors in short-read data that uses a generalized suffix trie on the read data as the underlying data structure. Our results show that the method can identify erroneous reads with sensitivity and specificity of over 99% and 96% for simulated data with error rates of up to 3% as well as for real data. Furthermore, it achieves an error correction accuracy of over 80% for simulated data and over 88% for real data. These results are clearly superior to previously published approaches. SHREC is available as an efficient open-source Java implementation that allows processing of 10 million of short reads on a standard workstation.


Assuntos
Algoritmos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos , DNA/genética , Bases de Dados de Ácidos Nucleicos , Genoma/genética , Projetos de Pesquisa , Fatores de Tempo
7.
Bioinformatics ; 25(17): 2279-80, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19535537

RESUMO

SUMMARY: The shorter and vastly more numerous reads produced by second-generation sequencing technologies require new tools that can assemble massive numbers of reads in reasonable time. Existing short-read assembly tools can be classified into two categories: greedy extension-based and graph-based. While the graph-based approaches are generally superior in terms of assembly quality, the computer resources required for building and storing a huge graph are very high. In this article, we present Taipan, an assembly algorithm which can be viewed as a hybrid of these two approaches. Taipan uses greedy extensions for contig construction but at each step realizes enough of the corresponding read graph to make better decisions as to how assembly should continue. We show that this approach can achieve an assembly quality at least as good as the graph-based approaches used in the popular Edena and Velvet assembly tools using a moderate amount of computing resources.


Assuntos
Algoritmos , Helicobacter pylori/genética , Análise de Sequência de DNA/métodos , Staphylococcus aureus/genética , Biologia Computacional , Bases de Dados de Ácidos Nucleicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA