Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Glob Health Res Policy ; 8(1): 18, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246227

RESUMO

BACKGROUND: To detect and identify mosquitoes using their characteristic high-pitched sound, we have developed a smartphone application, known as the 'HumBug sensor', that records the acoustic signature of this sound, along with the time and location. This data is then sent remotely to a server where algorithms identify the species according to their distinctive acoustic signature. Whilst this system works well, a key question that remains is what mechanisms will lead to effective uptake and use of this mosquito survey tool? We addressed this question by working with local communities in rural Tanzania and providing three alternative incentives: money only, short message service (SMS) reminders and money, and SMS reminders only. We also had a control group with no incentive. METHODS: A multi-site, quantitative empirical study was conducted in four villages in Tanzania from April to August 2021. Consenting participants (n = 148) were recruited and placed into one of the three intervention arms: monetary incentives only; SMS reminders with monetary incentives; and SMS reminders only. There was also a control group (no intervention). To test effectiveness of the mechanisms, the number of audio uploads to the server of the four trial groups on their specific dates were compared. Qualitative focus group discussions and feedback surveys were also conducted to explore participants' perspectives on their participation in the study and to capture their experiences of using the HumBug sensor. RESULTS: Qualitative data analysis revealed that for many participants (37 out of 81), the main motivation expressed was to learn more about the types of mosquitoes present in their houses. Results from the quantitative empirical study indicate that the participants in the 'control' group switched on their HumBug sensors more over the 14-week period (8 out of 14 weeks) when compared to those belonging to the 'SMS reminders and monetary incentives' trial group. These findings are statistically significant (p < 0.05 or p > 0.95 under a two-sided z-test), revealing that the provision of monetary incentives and sending SMS reminders did not appear to encourage greater number of audio uploads when compared to the control. CONCLUSIONS: Knowledge on the presence of harmful mosquitoes was the strongest motive for local communities to collect and upload mosquito sound data via the HumBug sensor in rural Tanzania. This finding suggests that most efforts should be made to improve flow of real-time information back to the communities on types and risks associated with mosquitoes present in their houses.


Assuntos
Culicidae , Envio de Mensagens de Texto , Animais , Humanos , Smartphone , Motivação , Tanzânia
2.
Sci Rep ; 11(1): 15337, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321525

RESUMO

The epidemiology of human malaria differs considerably between and within geographic regions due, in part, to variability in mosquito species behaviours. Recently, the WHO emphasised stratifying interventions using local surveillance data to reduce malaria. The usefulness of vector surveillance is entirely dependent on the biases inherent in the sampling methods deployed to monitor mosquito populations. To understand and interpret mosquito surveillance data, the frequency of use of malaria vector collection methods was analysed from a georeferenced vector dataset (> 10,000 data records), extracted from 875 manuscripts across Africa, the Americas and the Asia-Pacific region. Commonly deployed mosquito collection methods tend to target anticipated vector behaviours in a region to maximise sample size (and by default, ignoring other behaviours). Mosquito collection methods targeting both host-seeking and resting behaviours were seldomly deployed concurrently at the same site. A balanced sampling design using multiple methods would improve the understanding of the range of vector behaviours, leading to improved surveillance and more effective vector control.


Assuntos
Anopheles/fisiologia , Comportamento Animal/fisiologia , Malária/transmissão , Mosquitos Vetores/fisiologia , África/epidemiologia , Animais , Anopheles/parasitologia , Ásia/epidemiologia , Humanos , Malária/epidemiologia , Mosquitos Vetores/parasitologia , América do Norte/epidemiologia , Plasmodium/fisiologia , América do Sul/epidemiologia
3.
BMJ Glob Health ; 2(2): e000198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28589015

RESUMO

Protecting individuals and households against mosquito bites with long-lasting insecticidal nets (LLINs) or indoor residual spraying (IRS) can suppress entire populations of unusually efficient malaria vector species that predominantly feed indoors on humans. Mosquitoes which usually feed on animals are less reliant on human blood, so they are far less vulnerable to population suppression effects of such human-targeted insecticidal measures. Fortunately, the dozens of mosquito species which primarily feed on animals are also relatively inefficient vectors of malaria, so personal protection against mosquito bites may be sufficient to eliminate transmission. However, a handful of mosquito species are particularly problematic vectors of residual malaria transmission, because they feed readily on both humans and animals. These unusual vectors feed often enough on humans to be potent malaria vectors, but also often enough on animals to evade population control with LLINs, IRS or any other insecticidal personal protection measure targeted only to humans. Anopheles arabiensis and A. coluzzii in Africa, A. darlingi in South America and A. farauti in Oceania, as well as A. culicifacies species E, A. fluviatilis species S, A. lesteri and A. minimus in Asia, all feed readily on either humans or animals and collectively mediate residual malaria transmission across most of the tropics. Eliminating malaria transmission by vectors exhibiting such dual host preferences will require aggressive mosquito population abatement, rather than just personal protection of humans. Population suppression of even these particularly troublesome vectors is achievable with a variety of existing vector control technologies that remain underdeveloped or underexploited.

4.
Parasit Vectors ; 10(1): 148, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302156

RESUMO

BACKGROUND: Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito's geographical distribution. RESULTS: We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated. CONCLUSIONS: Our map contributes towards efforts determining the spatial heterogeneity in Cx. tritaeniorhynchus distribution within the limits of JE transmission. Specifically, this map can be used to inform vector control programs and can be used to identify key areas where the prevention of Cx. tritaeniorhynchus establishment should be a priority.


Assuntos
Distribuição Animal , Culex/fisiologia , Culex/virologia , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/epidemiologia , Mapeamento Geográfico , Animais , Ásia/epidemiologia , Encefalite Japonesa/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Topografia Médica
5.
Malar J ; 16(1): 85, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219387

RESUMO

BACKGROUND: Many of the mosquito species responsible for malaria transmission belong to a sibling complex; a taxonomic group of morphologically identical, closely related species. Sibling species often differ in several important factors that have the potential to impact malaria control, including their geographical distribution, resistance to insecticides, biting and resting locations, and host preference. The aim of this study was to define the geographical distributions of dominant malaria vector sibling species in Africa so these distributions can be coupled with data on key factors such as insecticide resistance to aid more focussed, species-selective vector control. RESULTS: Within the Anopheles gambiae species complex and the Anopheles funestus subgroup, predicted geographical distributions for Anopheles coluzzii, An. gambiae (as now defined) and An. funestus (distinct from the subgroup) have been produced for the first time. Improved predicted geographical distributions for Anopheles arabiensis, Anopheles melas and Anopheles merus have been generated based on records that were confirmed using molecular identification methods and a model that addresses issues of sampling bias and past changes to the environment. The data available for insecticide resistance has been evaluated and differences between sibling species are apparent although further analysis is required to elucidate trends in resistance. CONCLUSIONS: Sibling species display important variability in their geographical distributions and the most important malaria vector sibling species in Africa have been mapped here for the first time. This will allow geographical occurrence data to be coupled with species-specific data on important factors for vector control including insecticide resistance. Species-specific data on insecticide resistance is available for the most important malaria vectors in Africa, namely An. arabiensis, An. coluzzii, An. gambiae and An. funestus. Future work to combine these data with the geographical distributions mapped here will allow more focussed and resource-efficient vector control and provide information to greatly improve and inform existing malaria transmission models.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/crescimento & desenvolvimento , Filogeografia , África , Animais , Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Mosquitos Vetores/classificação
6.
Parasit Vectors ; 9: 242, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27125995

RESUMO

BACKGROUND: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the geographical distribution of disease risk is to define the distributions of the reservoir and vector species. METHODS: We used macaque and mosquito species presence data, background data that captured sampling bias in the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes, to predict the distributions of each vector and host species. We then compared the predicted distribution of each species with cover of each land class. RESULTS: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60% tree cover) whereas the Dirus Complex was predicted to occur in areas with 10-100% tree cover as well as vegetation mosaics and cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas. CONCLUSIONS: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found. This is of most significance in the northern part of its range where members of the Dirus Complex are the main P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself using infection data is required to explore this further. The species distributions generated here can now be included in future analyses of P. knowlesi infection risk.


Assuntos
Culicidae/fisiologia , Macaca , Malária/parasitologia , Doenças dos Macacos/parasitologia , Plasmodium knowlesi/isolamento & purificação , Animais , Sudeste Asiático/epidemiologia , Culicidae/parasitologia , Florestas , Malária/epidemiologia , Doenças dos Macacos/epidemiologia
7.
Sci Data ; 3: 160014, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927852

RESUMO

Anopheles mosquitoes were first recognised as the transmitters of human malaria in the late 19th Century and have been subject to a huge amount of research ever since. Yet there is still much that is unknown regarding the ecology, behaviour (collectively 'bionomics') and sometimes even the identity of many of the world's most prominent disease vectors, much less the within-species variation in their bionomics. Whilst malaria elimination remains an ambitious goal, it is becoming increasingly clear that knowledge of vector behaviour is needed to effectively target control measures. A database of bionomics data for the dominant vector species of malaria worldwide has been compiled from published peer-reviewed literature. The data identification and collation processes are described, together with the geo-positioning and quality control methods. This is the only such dataset in existence and provides a valuable resource to researchers and policy makers in this field.


Assuntos
Anopheles , Bases de Dados Factuais , Insetos Vetores , Malária/transmissão , Animais , Anopheles/fisiologia , Humanos , Malária/epidemiologia
8.
Malar J ; 15: 142, 2016 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-26945997

RESUMO

BACKGROUND: Malaria remains a heavy burden across sub-Saharan Africa where transmission is maintained by some of the world's most efficient vectors. Indoor insecticide-based control measures have significantly reduced transmission, yet elimination remains a distant target. Knowing the relative abundance of the primary vector species can provide transmission models with much needed information to guide targeted control measures. Moreover, understanding how existing interventions are impacting on these relative abundances highlights where alternative control (e.g., larval source management) is needed. METHODS: Using the habitat suitability probabilities generated by predictive species distribution models combined with data collated from the literature, a multinomial generalized additive model was applied to produce relative abundance estimates for Anopheles arabiensis, Anopheles funestus and Anopheles gambiae/Anopheles coluzzii. Using pre- and post-intervention abundance data, estimates of the effect of indoor insecticide-based interventions on these relative abundances were made and are illustrated in post-intervention maps. RESULTS: Conditional effect plots and relative abundance maps illustrate the individual species' predicted habitat suitability and how they interact when in sympatry. Anopheles arabiensis and An. funestus show an affinity in habitat preference at the expense of An. gambiae/An. coluzzii, whereas increasing habitat suitability for An. gambiae/An. coluzzii is conversely less suitable for An. arabiensis but has little effect on An. funestus. Indoor insecticide-based interventions had a negative impact on the relative abundance of An. funestus, and a lesser effect on An. arabiensis. Indoor residual spraying had the greatest impact on the relative abundance of An. funestus, and a lesser effect on An. gambiae/An. coluzzii. Insecticide-treated bed nets reduced the relative abundance of both species equally. These results do not indicate changes in the absolute abundance of these species, which may be reduced for all species overall. CONCLUSIONS: The maps presented here highlight the interactions between the primary vector species in sub-Saharan Africa and demonstrate that An. funestus is more susceptible to certain indoor-based insecticide interventions than An. gambiae/An. coluzzii, which in turn, is more susceptible than An. arabiensis. This may provide An. arabiensis with a competitive advantage where it is found in sympatry with other more endophilic vectors, and potentially increase the need for outdoor-based vector interventions to deal with any residual transmission barring the way to malaria elimination.


Assuntos
Anopheles/efeitos dos fármacos , Insetos Vetores/efeitos dos fármacos , Inseticidas/farmacologia , Malária/prevenção & controle , Malária/transmissão , Modelos Biológicos , Controle de Mosquitos/estatística & dados numéricos , África , Animais , Humanos , Mosquiteiros Tratados com Inseticida , Inseticidas/uso terapêutico
9.
Trans R Soc Trop Med Hyg ; 110(2): 107-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26822603

RESUMO

BACKGROUND: Major gains have been made in reducing malaria transmission in many parts of the world, principally by scaling-up coverage with long-lasting insecticidal nets and indoor residual spraying. Historically, choice of vector control intervention has been largely guided by a parameter sensitivity analysis of George Macdonald's theory of vectorial capacity that suggested prioritizing methods that kill adult mosquitoes. While this advice has been highly successful for transmission suppression, there is a need to revisit these arguments as policymakers in certain areas consider which combinations of interventions are required to eliminate malaria. METHODS AND RESULTS: Using analytical solutions to updated equations for vectorial capacity we build on previous work to show that, while adult killing methods can be highly effective under many circumstances, other vector control methods are frequently required to fill effective coverage gaps. These can arise due to pre-existing or developing mosquito physiological and behavioral refractoriness but also due to additive changes in the relative importance of different vector species for transmission. Furthermore, the optimal combination of interventions will depend on the operational constraints and costs associated with reaching high coverage levels with each intervention. CONCLUSIONS: Reaching specific policy goals, such as elimination, in defined contexts requires increasingly non-generic advice from modelling. Our results emphasize the importance of measuring baseline epidemiology, intervention coverage, vector ecology and program operational constraints in predicting expected outcomes with different combinations of interventions.


Assuntos
Anopheles/parasitologia , Erradicação de Doenças/métodos , Inseticidas , Malária/prevenção & controle , Controle de Mosquitos , Animais , Política de Saúde , Humanos , Estágios do Ciclo de Vida , Malária/transmissão , Controle de Mosquitos/métodos , Vigilância em Saúde Pública
10.
Lancet Infect Dis ; 16(4): 465-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26809816

RESUMO

BACKGROUND: Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. METHODS: We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011-13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006-08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. FINDINGS: With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19-29) and a reduction in mortality rates of 40% (27-61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by 59% (Crl 56-64) and mortality rates by 74% (67-82); with additional near-term innovation, incidence was predicted to decline by 74% (70-77) and mortality rates by 81% (76-87). These scenarios were predicted to lead to local elimination in 13 countries under the Accelerate 1 scenario, 20 under Accelerate 2, and 22 under Innovate by 2030, reducing the proportion of the population living in at-risk areas by 36% if elimination is defined at the first administrative unit. However, failing to maintain coverage levels of 2011-13 is predicted to raise case incidence by 76% (Crl 71-80) and mortality rates by 46% (39-51) by 2020. INTERPRETATION: Our findings show that decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage of key interventions is increased. FUNDING: UK Medical Research Council, UK Department for International Development, the Bill & Melinda Gates Foundation, the Swiss Development Agency, and the US Agency for International Development.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Culicidae/virologia , Insetos Vetores/virologia , Malária Falciparum/prevenção & controle , Modelos Teóricos , Animais , Artesunato , Feminino , Geografia , Humanos , Incidência , Mosquiteiros Tratados com Inseticida , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Controle de Mosquitos , Prevalência
11.
Sci Data ; 2: 150035, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175912

RESUMO

Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors' global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.


Assuntos
Aedes , Vírus Chikungunya , Vírus da Dengue , Dengue , Insetos Vetores , Animais , Bases de Dados Factuais , Dengue/epidemiologia , Dengue/transmissão , Humanos
12.
Elife ; 4: e08347, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26126267

RESUMO

Dengue and chikungunya are increasing global public health concerns due to their rapid geographical spread and increasing disease burden. Knowledge of the contemporary distribution of their shared vectors, Aedes aegypti and Aedes albopictus remains incomplete and is complicated by an ongoing range expansion fuelled by increased global trade and travel. Mapping the global distribution of these vectors and the geographical determinants of their ranges is essential for public health planning. Here we compile the largest contemporary database for both species and pair it with relevant environmental variables predicting their global distribution. We show Aedes distributions to be the widest ever recorded; now extensive in all continents, including North America and Europe. These maps will help define the spatial limits of current autochthonous transmission of dengue and chikungunya viruses. It is only with this kind of rigorous entomological baseline that we can hope to project future health impacts of these viruses.


Assuntos
Aedes/crescimento & desenvolvimento , Insetos Vetores , Filogeografia , Animais , Infecções por Arbovirus/transmissão , Saúde Global , Humanos
13.
Adv Parasitol ; 83: 173-266, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23876873

RESUMO

Malaria remains one of the greatest human health burdens in Indonesia. Although Indonesia has a long and renowned history in the early research and discoveries of malaria and subsequently in the successful use of environmental control methods to combat the vector, much remains unknown about many of these mosquito species. There are also significant gaps in the existing knowledge on the transmission epidemiology of malaria, most notably in the highly malarious eastern half of the archipelago. These compound the difficulty of developing targeted and effective control measures. The sheer complexity and number of malaria vectors in the country are daunting. The difficult task of summarizing the available information for each species and/or species complex is compounded by the patchiness of the data: while relatively plentiful in one area or region, it can also be completely lacking in others. Compared to many other countries in the Oriental and Australasian biogeographical regions, only scant information on vector bionomics and response to chemical measures is available in Indonesia. That information is often either decades old, geographically patchy or completely lacking. Additionally, a large number of information sources are published in Dutch or Indonesian language and therefore less accessible. This review aims to present an updated overview of the known distribution and bionomics of the 20 confirmed malaria vector species or species complexes regarded as either primary or secondary (incidental) malaria vectors within Indonesia. This chapter is not an exhaustive review of each of these species. No attempt is made to specifically discuss or resolve the taxonomic record of listed species in this document, while recognizing the ever evolving revisions in the systematics of species groups and complexes. A review of past and current status of insecticide susceptibility of eight vector species of malaria is also provided.


Assuntos
Anopheles/crescimento & desenvolvimento , Ecologia , Insetos Vetores , Filogeografia , Animais , Anopheles/efeitos dos fármacos , Indonésia , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/epidemiologia
14.
Adv Parasitol ; 80: 1-111, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23199486

RESUMO

Plasmodium vivax occurs globally and thrives in both temperate and tropical climates. Here, we review the evidence of the biological limits of its contemporary distribution and the global population at risk (PAR) of the disease within endemic countries. We also review the most recent evidence for the endemic level of transmission within its range and discuss the implications for burden of disease assessments. Finally, the evidence-base for defining the contemporary distribution and PAR of P. vivax are discussed alongside a description of the vectors of human malaria within the limits of risk. This information along with recent data documenting the severe morbid and fatal consequences of P. vivax infection indicates that the public health significance of P. vivax is likely to have been seriously underestimated.


Assuntos
Malária Vivax/epidemiologia , Malária Vivax/transmissão , Saúde Pública , Animais , Sistema do Grupo Sanguíneo Duffy , Doenças Endêmicas , Humanos , Insetos Vetores , Plasmodium vivax/fisiologia , Fatores de Risco
15.
Parasit Vectors ; 5: 69, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22475528

RESUMO

BACKGROUND: Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. METHODS: Here we describe the generation of a global map of the dominant vector species (DVS) of malaria that makes use of predicted distribution maps for individual species or species complexes. RESULTS: Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. CONCLUSIONS: The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request) will be made directly available via the Malaria Atlas Project (MAP) website from early 2012.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Malária/transmissão , Filogeografia , África , Animais , Anopheles/parasitologia , Saúde Global , Humanos
16.
Parasit Vectors ; 4: 89, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21612587

RESUMO

BACKGROUND: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. RESULTS: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. CONCLUSIONS: This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.


Assuntos
Anopheles/classificação , Anopheles/crescimento & desenvolvimento , Vetores de Doenças , Ecossistema , Geografia , Malária/epidemiologia , Animais , Ásia , Biodiversidade , Humanos , Ilhas do Pacífico
17.
Parasit Vectors ; 3: 117, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21129198

RESUMO

BACKGROUND: This is the second in a series of three articles documenting the geographical distribution of 41 dominant vector species (DVS) of human malaria. The first paper addressed the DVS of the Americas and the third will consider those of the Asian Pacific Region. Here, the DVS of Africa, Europe and the Middle East are discussed. The continent of Africa experiences the bulk of the global malaria burden due in part to the presence of the An. gambiae complex. Anopheles gambiae is one of four DVS within the An. gambiae complex, the others being An. arabiensis and the coastal An. merus and An. melas. There are a further three, highly anthropophilic DVS in Africa, An. funestus, An. moucheti and An. nili. Conversely, across Europe and the Middle East, malaria transmission is low and frequently absent, despite the presence of six DVS. To help control malaria in Africa and the Middle East, or to identify the risk of its re-emergence in Europe, the contemporary distribution and bionomics of the relevant DVS are needed. RESULTS: A contemporary database of occurrence data, compiled from the formal literature and other relevant resources, resulted in the collation of information for seven DVS from 44 countries in Africa containing 4234 geo-referenced, independent sites. In Europe and the Middle East, six DVS were identified from 2784 geo-referenced sites across 49 countries. These occurrence data were combined with expert opinion ranges and a suite of environmental and climatic variables of relevance to anopheline ecology to produce predictive distribution maps using the Boosted Regression Tree (BRT) method. CONCLUSIONS: The predicted geographic extent for the following DVS (or species/suspected species complex*) is provided for Africa: Anopheles (Cellia) arabiensis, An. (Cel.) funestus*, An. (Cel.) gambiae, An. (Cel.) melas, An. (Cel.) merus, An. (Cel.) moucheti and An. (Cel.) nili*, and in the European and Middle Eastern Region: An. (Anopheles) atroparvus, An. (Ano.) labranchiae, An. (Ano.) messeae, An. (Ano.) sacharovi, An. (Cel.) sergentii and An. (Cel.) superpictus*. These maps are presented alongside a bionomics summary for each species relevant to its control.

18.
Parasit Vectors ; 3: 72, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20712879

RESUMO

BACKGROUND: An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. RESULTS: A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. CONCLUSIONS: The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project.

19.
Malar J ; 9: 69, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20202199

RESUMO

BACKGROUND: A detailed knowledge of the distribution of the main Anopheles malaria vectors in Kenya should guide national vector control strategies. However, contemporary spatial distributions of the locally dominant Anopheles vectors including Anopheles gambiae, Anopheles arabiensis, Anopheles merus, Anopheles funestus, Anopheles pharoensis and Anopheles nili are lacking. The methods and approaches used to assemble contemporary available data on the present distribution of the dominant malaria vectors in Kenya are presented here. METHOD: Primary empirical data from published and unpublished sources were identified for the period 1990 to 2009. Details recorded for each source included the first author, year of publication, report type, survey location name, month and year of survey, the main Anopheles species reported as present and the sampling and identification methods used. Survey locations were geo-positioned using national digital place name archives and on-line geo-referencing resources. The geo-located species-presence data were displayed and described administratively, using first-level administrative units (province), and biologically, based on the predicted spatial margins of Plasmodium falciparum transmission intensity in Kenya for the year 2009. Each geo-located survey site was assigned an urban or rural classification and attributed an altitude value. RESULTS: A total of 498 spatially unique descriptions of Anopheles vector species across Kenya sampled between 1990 and 2009 were identified, 53% were obtained from published sources and further communications with authors. More than half (54%) of the sites surveyed were investigated since 2005. A total of 174 sites reported the presence of An. gambiae complex without identification of sibling species. Anopheles arabiensis and An. funestus were the most widely reported at 244 and 265 spatially unique sites respectively with the former showing the most ubiquitous distribution nationally. Anopheles gambiae, An. arabiensis, An. funestus and An. pharoensis were reported at sites located in all the transmission intensity classes with more reports of An. gambiae in the highest transmission intensity areas than the very low transmission areas. CONCLUSION: A contemporary, spatially defined database of the main malaria vectors in Kenya provides a baseline for future compilations of data and helps identify areas where information is currently lacking. The data collated here are published alongside this paper where it may help guide future sampling location decisions, help with the planning of vector control suites nationally and encourage broader research inquiry into vector species niche modeling.


Assuntos
Anopheles/classificação , Bases de Dados Factuais , Insetos Vetores/classificação , Malária Falciparum/transmissão , Animais , Anopheles/parasitologia , Ecologia , Sistemas de Informação Geográfica , Geografia , Humanos , Insetos Vetores/parasitologia , Quênia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Densidade Demográfica , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA