Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 81(14): 4682-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25934622

RESUMO

Fusarium head blight (FHB) is one of the most damaging diseases of wheat. FHB is caused by a species complex that includes two genera of Ascomycetes: Microdochium and Fusarium. Fusarium graminearum, Fusarium culmorum, Fusarium poae, and Microdochium nivale are among the most common FHB species in Europe and were chosen for these experiments. Field studies and surveys show that two or more species often coexist within the same field or grain sample. In this study, we investigated the competitiveness of isolates of different species against isolates of F. graminearum at the scale of a single spike. By performing point inoculations of a single floret, we ensured that each species was able to establish independent infections and competed for spike colonization only. The fungal colonization was assessed in each spike by quantitative PCR. After establishing that the spike colonization was mainly downwards, we compared the relative colonization of each species in coinoculations. Classical analysis of variance suggested a competitive interaction but remained partly inconclusive because of a large between-spike variance. Further data exploration revealed a clear exclusion of one of the competing species and the complete absence of coexistence at the spike level.


Assuntos
Fungos/fisiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Triticum/microbiologia , Xylariales/fisiologia , Fungos/classificação
2.
Appl Environ Microbiol ; 81(3): 957-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25416772

RESUMO

Head blight (HB) is one of the most damaging diseases on wheat, inducing significant yield losses and toxin accumulation in grains. Fungal pathogens responsible for HB include the genus Microdochium, with two species, and the toxin producer genus Fusarium, with several species. Field studies and surveys show that two or more species can coexist within a same field and coinfect the same plant or the same spike. In the current study, we investigated how the concomitant presence of F. graminearum and another of the HB complex species influences the spike colonization and the toxin production by the fungi. To study these interactions, 17 well-characterized isolates representing five species were inoculated alone or in pairs on wheat spikes in greenhouse and field experiments. The fungal DNA in the grains was estimated by quantitative PCR and toxin contents (deoxynivalenol and nivalenol) by ultraperformance liquid chromatography-UV detection-tandem mass spectrometry. The responses of the different isolates to the presence of a competitor were variable and isolate specific more than species specific. The development of the most aggressive isolates was either unchanged or a slightly increased, while the development of the less aggressive isolates was reduced. The main outcome of the study was that no trend of increased toxin production was observed in coinoculations compared to single inoculations. On the contrary, the amount of toxin produced was often lower than expected in coinoculations. We thus conclude against the hypothesis that the co-occurrence of several HB-causing species in the same field might aggravate the risk linked to fusarium toxins in wheat production.


Assuntos
Ecossistema , Fusarium/crescimento & desenvolvimento , Interações Microbianas , Micotoxinas/metabolismo , Doenças das Plantas/microbiologia , Triticum/microbiologia , Xylariales/crescimento & desenvolvimento , Cromatografia Líquida , DNA Fúngico/análise , DNA Fúngico/genética , Fusarium/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Xylariales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA