Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Antimicrob Agents Chemother ; 67(12): e0067123, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37966227

RESUMO

Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Animais , Coelhos , Antituberculosos/farmacologia , Sistema Nervoso Central , Tuberculose Meníngea/tratamento farmacológico
2.
JBMR Plus ; 7(6): e10739, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37283649

RESUMO

The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall-Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6-10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix +/Del2, Nfix +/Del24, Nfix +/Del140, Nfix Del24/Del24, and Nfix Del140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but Nfix Del2/Del2 mice had significantly reduced viability (p < 0.002) and died at 2-3 weeks of age. Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix +/+ and Nfix +/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed Nfix Del2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix +/+ and Nfix +/Del2 mice. Nfix Del2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix +/+ mice. Thus, Nfix Del2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

3.
Neurobiol Dis ; 188: 106336, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38317803

RESUMO

Down syndrome (DS) is one of the most common birth defects and the most prevalent genetic form of intellectual disability. DS arises from trisomy of chromosome 21, but its molecular and pathological consequences are not fully understood. In this study, we compared Dp1Tyb mice, a DS model, against their wild-type (WT) littermates of both sexes to investigate the impact of DS-related genetic abnormalities on the brain phenotype. We performed in vivo whole brain magnetic resonance imaging (MRI) and hippocampal 1H magnetic resonance spectroscopy (MRS) on the animals at 3 months of age. Subsequently, ex vivo MRI scans and histological analyses were conducted post-mortem. Our findings unveiled the following neuroanatomical and biochemical alterations in the Dp1Tyb brains: a smaller surface area and a rounder shape compared to WT brains, with DS males also presenting smaller global brain volume compared with the counterpart WT. Regional volumetric analysis revealed significant changes in 26 out of 72 examined brain regions, including the medial prefrontal cortex and dorsal hippocampus. These alterations were consistently observed in both in vivo and ex vivo imaging data. Additionally, high-resolution ex vivo imaging enabled us to investigate cerebellar layers and hippocampal sub-regions, revealing selective areas of decrease and remodelling in these structures. An analysis of hippocampal metabolites revealed an elevation in glutamine and the glutamine/glutamate ratio in the Dp1Tyb mice compared to controls, suggesting a possible imbalance in the excitation/inhibition ratio. This was accompanied by the decreased levels of taurine. Histological analysis revealed fewer neurons in the hippocampal CA3 and DG layers, along with an increase in astrocytes and microglia. These findings recapitulate multiple neuroanatomical and biochemical features associated with DS, enriching our understanding of the potential connection between chromosome 21 trisomy and the resultant phenotype.


Assuntos
Síndrome de Down , Masculino , Feminino , Camundongos , Animais , Síndrome de Down/patologia , Trissomia/genética , Trissomia/patologia , Glutamina/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
4.
Biochem J ; 479(13): 1467-1486, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730579

RESUMO

The protein kinase PKN2 is required for embryonic development and PKN2 knockout mice die as a result of failure in the expansion of mesoderm, cardiac development and neural tube closure. In the adult, cardiomyocyte PKN2 and PKN1 (in combination) are required for cardiac adaptation to pressure-overload. The specific role of PKN2 in contractile cardiomyocytes during development and its role in the adult heart remain to be fully established. We used mice with cardiomyocyte-directed knockout of PKN2 or global PKN2 haploinsufficiency to assess cardiac development and function using high resolution episcopic microscopy, MRI, micro-CT and echocardiography. Biochemical and histological changes were also assessed. Cardiomyocyte-directed PKN2 knockout embryos displayed striking abnormalities in the compact myocardium, with frequent myocardial clefts and diverticula, ventricular septal defects and abnormal heart shape. The sub-Mendelian homozygous knockout survivors developed cardiac failure. RNASeq data showed up-regulation of PKN2 in patients with dilated cardiomyopathy, suggesting an involvement in adult heart disease. Given the rarity of homozygous survivors with cardiomyocyte-specific deletion of PKN2, the requirement for PKN2 in adult mice was explored using the constitutive heterozygous PKN2 knockout. Cardiac hypertrophy resulting from hypertension induced by angiotensin II was reduced in these haploinsufficient PKN2 mice relative to wild-type littermates, with suppression of cardiomyocyte hypertrophy and cardiac fibrosis. It is concluded that cardiomyocyte PKN2 is essential for heart development and the formation of compact myocardium and is also required for cardiac hypertrophy in hypertension. Thus, PKN signalling may offer therapeutic options for managing congenital and adult heart diseases.


Assuntos
Cardiomiopatias , Hipertensão , Proteína Quinase C/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Feminino , Hipertensão/metabolismo , Hipertensão/patologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Gravidez
5.
Adv Sci (Weinh) ; 9(12): e2105333, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106965

RESUMO

Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Neoplasias , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem por Ressonância Magnética Intervencionista/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Qualidade de Vida
7.
Nat Commun ; 12(1): 444, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469002

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of primary brain cancer, for which effective therapies are urgently needed. Chimeric antigen receptor (CAR)-based immunotherapy represents a promising therapeutic approach, but it is often impeded by highly immunosuppressive tumor microenvironments (TME). Here, in an immunocompetent, orthotopic GBM mouse model, we show that CAR-T cells targeting tumor-specific epidermal growth factor receptor variant III (EGFRvIII) alone fail to control fully established tumors but, when combined with a single, locally delivered dose of IL-12, achieve durable anti-tumor responses. IL-12 not only boosts cytotoxicity of CAR-T cells, but also reshapes the TME, driving increased infiltration of proinflammatory CD4+ T cells, decreased numbers of regulatory T cells (Treg), and activation of the myeloid compartment. Importantly, the immunotherapy-enabling benefits of IL-12 are achieved with minimal systemic effects. Our findings thus show that local delivery of IL-12 may be an effective adjuvant for CAR-T cell therapy for GBM.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoconjugados/administração & dosagem , Imunoterapia Adotiva/métodos , Interleucina-12/administração & dosagem , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Receptores ErbB/imunologia , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Imunoconjugados/imunologia , Fragmentos Fc das Imunoglobulinas/administração & dosagem , Fragmentos Fc das Imunoglobulinas/imunologia , Injeções Intralesionais/métodos , Interleucina-12/imunologia , Imagem por Ressonância Magnética Intervencionista , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
8.
Magn Reson Med ; 85(4): 2294-2308, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104278

RESUMO

PURPOSE: To develop a rapid and accurate MRI phase-unwrapping technique for challenging phase topographies encountered at high magnetic fields, around metal implants, or postoperative cavities, which is sufficiently fast to be applied to large-group studies including Quantitative Susceptibility Mapping and functional MRI (with phase-based distortion correction). METHODS: The proposed path-following phase-unwrapping algorithm, ROMEO, estimates the coherence of the signal both in space-using MRI magnitude and phase information-and over time, assuming approximately linear temporal phase evolution. This information is combined to form a quality map that guides the unwrapping along a 3D path through the object using a computationally efficient minimum spanning tree algorithm. ROMEO was tested against the two most commonly used exact phase-unwrapping methods, PRELUDE and BEST PATH, in simulated topographies and at several field strengths: in 3T and 7T in vivo human head images and 9.4T ex vivo rat head images. RESULTS: ROMEO was more reliable than PRELUDE and BEST PATH, yielding unwrapping results with excellent temporal stability for multi-echo or multi-time-point data. It does not require image masking and delivers results within seconds, even in large, highly wrapped multi-echo data sets (eg, 9 seconds for a 7T head data set with 31 echoes and a 208 × 208 × 96 matrix size). CONCLUSION: Overall, ROMEO was both faster and more accurate than PRELUDE and BEST PATH, delivering exact results within seconds, which is well below typical image acquisition times, enabling potential on-console application.


Assuntos
Algoritmos , Encéfalo , Animais , Encéfalo/diagnóstico por imagem , Cabeça , Imageamento por Ressonância Magnética , Ratos
9.
Neuroimage ; 223: 117271, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32835824

RESUMO

Down Syndrome is a chromosomal disorder that affects the development of cerebellar cortical lobules. Impaired neurogenesis in the cerebellum varies among different types of neuronal cells and neuronal layers. In this study, we developed an imaging analysis framework that utilizes gadolinium-enhanced ex vivo mouse brain MRI. We extracted the middle Purkinje layer of the mouse cerebellar cortex, enabling the estimation of the volume, thickness, and surface area of the entire cerebellar cortex, the internal granular layer, and the molecular layer in the Tc1 mouse model of Down Syndrome. The morphometric analysis of our method revealed that a larger proportion of the cerebellar thinning in this model of Down Syndrome resided in the inner granule cell layer, while a larger proportion of the surface area shrinkage was in the molecular layer.


Assuntos
Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebelar/patologia , Síndrome de Down/diagnóstico por imagem , Síndrome de Down/patologia , Imageamento por Ressonância Magnética/métodos , Neurônios/patologia , Animais , Meios de Contraste , Modelos Animais de Doenças , Gadolínio/administração & dosagem , Aumento da Imagem/métodos , Masculino , Camundongos Endogâmicos C57BL , Coloração e Rotulagem/métodos
10.
Sci Rep ; 10(1): 9223, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32514049

RESUMO

Cancer cells differ in size from those of their host tissue and are known to change in size during the processes of cell death. A noninvasive method for monitoring cell size would be highly advantageous as a potential biomarker of malignancy and early therapeutic response. This need is particularly acute in brain tumours where biopsy is a highly invasive procedure. Here, diffusion MRI data were acquired in a GL261 glioma mouse model before and during treatment with Temozolomide. The biophysical model VERDICT (Vascular Extracellular and Restricted Diffusion for Cytometry in Tumours) was applied to the MRI data to quantify multi-compartmental parameters connected to the underlying tissue microstructure, which could potentially be useful clinical biomarkers. These parameters were compared to ADC and kurtosis diffusion models, and, measures from histology and optical projection tomography. MRI data was also acquired in patients to assess the feasibility of applying VERDICT in a range of different glioma subtypes. In the GL261 gliomas, cellular changes were detected according to the VERDICT model in advance of gross tumour volume changes as well as ADC and kurtosis models. VERDICT parameters in glioblastoma patients were most consistent with the GL261 mouse model, whilst displaying additional regions of localised tissue heterogeneity. The present VERDICT model was less appropriate for modelling more diffuse astrocytomas and oligodendrogliomas, but could be tuned to improve the representation of these tumour types. Biophysical modelling of the diffusion MRI signal permits monitoring of brain tumours without invasive intervention. VERDICT responds to microstructural changes induced by chemotherapy, is feasible within clinical scan times and could provide useful biomarkers of treatment response.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Glioma/diagnóstico por imagem , Animais , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Feminino , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Gradação de Tumores , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos
11.
Magn Reson Med ; 84(3): 1543-1551, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32060975

RESUMO

INTRODUCTION: To combine numerical simulations, in vitro and in vivo experiments to evaluate the feasibility of measuring diffusion exchange across the cell membrane with diffusion exchange spectroscopy (DEXSY). METHODS: DEXSY acquisitions were simulated over a range of permeabilities in nerve tissue and yeast substrates. In vitro measurements were performed in a yeast substrate and in vivo measurements in mouse tumor xenograft models, all at 9.4 T. RESULTS: Diffusion exchange was observed in simulations over a physiologically relevant range of cell permeability values. In vitro and in vivo measures also provided evidence of diffusion exchange, which was quantified with the Diffusion Exchange Index (DEI). CONCLUSIONS: Our findings provide preliminary evidence that DEXSY can be used to make in vivo measurements of diffusion exchange and cell membrane permeability.


Assuntos
Modelos Teóricos , Animais , Membrana Celular , Permeabilidade da Membrana Celular , Difusão , Camundongos , Permeabilidade , Análise Espectral
12.
EMBO Rep ; 20(10): e48155, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31468686

RESUMO

Epigenetic regulators are often hijacked by cancer cells to sustain malignant phenotypes. How cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. Here, we show that oncogenic signalling induces redistribution of EZH2 across the genome, and through misregulation of homeotic genes corrupts the identity of neural cells. Characterisation of EZH2 targets in de novo transformed cells, combined with analysis of glioma patient datasets and cell lines, reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a critical regulator of neurogenesis in the forebrain. Maintenance of tumorigenic potential by glioblastoma cells requires EMX2 repression, since forced EMX2 expression prevents tumour formation. Thus, by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programmes that specify normal cell identity and remove physiological breaks that restrain cell proliferation.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Glioma/patologia , Animais , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cromatina/metabolismo , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Glioma/genética , Humanos , Masculino , Camundongos Endogâmicos NOD , Modelos Biológicos , Fenótipo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
13.
Nanomedicine (Lond) ; 14(9): 1135-1152, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31050589

RESUMO

Aim: Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as magnetic resonance imaging (MRI) contrast agents; however, a number of T2-weighted imaging SPIONs have been withdrawn due to their poor clinical contrast performance. Our aim was to significantly improve SPION T2-weighted MRI contrast by clustering SPIONs within novel chitosan amphiphiles. Methods: Clustering SPIONs was achieved by encapsulation of hydrophobic-coated SPIONs with an amphiphilic chitosan polymer (GCPQ). Results: Clustering increases the spin-spin (r2) to spin-lattice (r1) relaxation ratio (r2/r1) from 3.0 to 79.1, resulting in superior contrast. Intravenously administered clustered SPIONs accumulated only in the liver and spleen; with the reduction in T2 relaxation confined, in the liver, to the extravascular space, giving clear MRI images of the liver vasculature.


Assuntos
Quitosana/química , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Meios de Contraste/administração & dosagem , Interações Hidrofóbicas e Hidrofílicas , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Camundongos Endogâmicos BALB C , Micelas , Baço/diagnóstico por imagem , Distribuição Tecidual
14.
NMR Biomed ; 32(5): e4073, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30779863

RESUMO

The VERDICT framework for modelling diffusion MRI data aims to relate parameters from a biophysical model to histological features used for tumour grading in prostate cancer. Validation of the VERDICT model is necessary for clinical use. This study compared VERDICT parameters obtained ex vivo with histology in five specimens from radical prostatectomy. A patient-specific 3D-printed mould was used to investigate the effects of fixation on VERDICT parameters and to aid registration to histology. A rich diffusion data set was acquired in each ex vivo prostate before and after fixation. At both time points, data were best described by a two-compartment model: the model assumes that an anisotropic tensor compartment represents the extracellular space and a restricted sphere compartment models the intracellular space. The effect of fixation on model parameters associated with tissue microstructure was small. The patient-specific mould minimized tissue deformations and co-localized slices, so that rigid registration of MRI to histology images allowed region-based comparison with histology. The VERDICT estimate of the intracellular volume fraction corresponded to histological indicators of cellular fraction, including high values in tumour regions. The average sphere radius from VERDICT, representing the average cell size, was relatively uniform across samples. The primary diffusion direction from the extracellular compartment of the VERDICT model aligned with collagen fibre patterns in the stroma obtained by structure tensor analysis. This confirmed the biophysical relationship between ex vivo VERDICT parameters and tissue microstructure from histology.


Assuntos
Imageamento por Ressonância Magnética , Próstata/diagnóstico por imagem , Fixação de Tecidos , Anisotropia , Tamanho Celular , Humanos , Masculino , Modelos Biológicos
15.
Radiol Imaging Cancer ; 1(1): e190008, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-33778671

RESUMO

Purpose: To determine whether q-space imaging (QSI), an advanced diffusion-weighted MRI method, provides a higher effect gradient to assess tumor cellularity than existing diffusion imaging methods, and fidelity to cellularity obtained from histologic analysis. Materials and Methods: In this prospective study, diffusion-weighted images were acquired from 20 whole-breast tumors freshly excised from participants (age range, 35-78 years) by using a clinical 3.0-T MRI unit. Median and skewness values were extracted from the histogram distributions obtained from QSI, monoexponential model, diffusion kurtosis imaging (DKI), and stretched exponential model (SEM). The skewness from QSI and other diffusion models was compared by using paired t tests and relative effect gradient obtained from correlating skewness values. Results: The skewness obtained from QSI (mean, 1.34 ± 0.77 [standard deviation]) was significantly higher than the skewness from monoexponential fitting approach (mean, 1.09 ± 0.67; P = .015), SEM (mean, 1.07 ± 0.70; P = .014), and DKI (mean, 0.97 ± 0.63; P = .004). QSI yielded a higher effect gradient in skewness (percentage increase) compared with monoexponential fitting approach (0.26 of 0.74; 35.1%), SEM (0.26 of 0.74; 35.1%), and DKI (0.37 of 0.63; 58.7%). The skewness and median from QSI were significantly correlated with the skewness (ρ = -0.468; P = .038) and median (ρ = -0.513; P = .021) of cellularity from histologic analysis. Conclusion: QSI yields a higher effect gradient in assessing breast tumor cellularity than existing diffusion methods, and fidelity to underlying histologic structure.Keywords: Breast, MR-Diffusion Weighted Imaging, MR-Imaging, Pathology, Tissue Characterization, Tumor ResponseOnline supplemental material is available for this article.Published under a CC BY 4.0 license.


Assuntos
Neoplasias da Mama , Imagem de Difusão por Ressonância Magnética , Adulto , Idoso , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos
16.
Elife ; 72018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30063207

RESUMO

The glymphatics system describes a CSF-mediated clearance pathway for the removal of potentially harmful molecules, such as amyloid beta, from the brain. As such, its components may represent new therapeutic targets to alleviate aberrant protein accumulation that defines the most prevalent neurodegenerative conditions. Currently, however, the absence of any non-invasive measurement technique prohibits detailed understanding of glymphatic function in the human brain and in turn, it's role in pathology. Here, we present the first non-invasive technique for the assessment of glymphatic inflow by using an ultra-long echo time, low b-value, multi-direction diffusion weighted MRI sequence to assess perivascular fluid movement (which represents a critical component of the glymphatic pathway) in the rat brain. This novel, quantitative and non-invasive approach may represent a valuable biomarker of CSF-mediated brain clearance, working towards the clinical need for reliable and early diagnostic indicators of neurodegenerative conditions such as Alzheimer's disease.


Assuntos
Encéfalo/anatomia & histologia , Líquido Cefalorraquidiano/metabolismo , Imagem de Tensor de Difusão , Imageamento Tridimensional , Reologia , Animais , Masculino , Ratos Sprague-Dawley
17.
Cancer Res ; 78(7): 1859-1872, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317434

RESUMO

Several distinct fluid flow phenomena occur in solid tumors, including intravascular blood flow and interstitial convection. Interstitial fluid pressure is often raised in solid tumors, which can limit drug delivery. To probe low-velocity flow in tumors resulting from raised interstitial fluid pressure, we developed a novel MRI technique named convection-MRI, which uses a phase-contrast acquisition with a dual-inversion vascular nulling preparation to separate intra- and extravascular flow. Here, we report the results of experiments in flow phantoms, numerical simulations, and tumor xenograft models to investigate the technical feasibility of convection-MRI. We observed a significant correlation between estimates of effective fluid pressure from convection-MRI with gold-standard, invasive measurements of interstitial fluid pressure in mouse models of human colorectal carcinoma. Our results show how convection-MRI can provide insights into the growth and responsiveness to vascular-targeting therapy in colorectal cancers.Significance: A noninvasive method for measuring low-velocity fluid flow caused by raised fluid pressure can be used to assess changes caused by therapy. Cancer Res; 78(7); 1859-72. ©2018 AACR.


Assuntos
Neoplasias Colorretais/irrigação sanguínea , Líquido Extracelular/fisiologia , Hidrodinâmica , Imageamento por Ressonância Magnética/métodos , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/patologia , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Camundongos Nus , Modelos Biológicos , Neovascularização Patológica/patologia , Imagens de Fantasmas
18.
Neuroimage ; 182: 314-328, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28774648

RESUMO

Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 µm and these are excellently matched with the OGSE estimates 4.2-6.5 µm, while SDE overestimates at 5.2-8 µm for the same sample. We found OGSE estimates to be more precise with on average a 0.5 µm standard deviation compared to the SDE estimates which have a 2 µm standard deviation. When testing the robustness of the estimates when the number of the diffusion gradient directions reduces, we found that both OGSE and SDE estimates are affected, however OGSE is more robust to these changes than the SDE. Overall, these results suggest, quantitatively and in in vivo conditions, that low-frequency OGSE sequences may provide improved accuracy of axon diameter mapping compared to standard SDE sequences.


Assuntos
Axônios , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Nervo Isquiático/diagnóstico por imagem , Animais , Simulação por Computador , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/normas , Imageamento por Ressonância Magnética/normas , Método de Monte Carlo , Neuroimagem/normas , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
19.
Front Oncol ; 7: 47, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28393049

RESUMO

This article describes apparatus to aid histological validation of magnetic resonance imaging studies of the human prostate. The apparatus includes a 3D-printed patient-specific mold that facilitates aligned in vivo and ex vivo imaging, in situ tissue fixation, and tissue sectioning with minimal organ deformation. The mold and a dedicated container include MRI-visible landmarks to enable consistent tissue positioning and minimize image registration complexity. The inclusion of high spatial resolution ex vivo imaging aids in registration of in vivo MRI and histopathology data.

20.
NMR Biomed ; 30(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28000292

RESUMO

The diffusion signal in breast tissue has primarily been modelled using apparent diffusion coefficient (ADC), intravoxel incoherent motion (IVIM) and diffusion tensor (DT) models, which may be too simplistic to describe the underlying tissue microstructure. Formalin-fixed breast cancer samples were scanned using a wide range of gradient strengths, durations, separations and orientations. A variety of one- and two-compartment models were tested to determine which best described the data. Models with restricted diffusion components and anisotropy were selected in most cancerous regions and there were no regions in which conventional ADC or DT models were selected. Maps of ADC generally related to cellularity on histology, but maps of parameters from more complex models suggest that both overall cell volume fraction and individual cell size can contribute to the diffusion signal, affecting the specificity of ADC to the tissue microstructure. The areas of coherence in diffusion anisotropy images were small, approximately 1 mm, but the orientation corresponded to stromal orientation patterns on histology.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tecido Conjuntivo/diagnóstico por imagem , Tecido Conjuntivo/patologia , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Biológicos , Simulação por Computador , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA