Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
2.
JACC Clin Electrophysiol ; 9(8 Pt 1): 1217-1231, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558285

RESUMO

BACKGROUND: Spatial heterogeneity in repolarization plays an important role in generating and sustaining cardiac arrhythmias. Reliable determination of repolarization times remains challenging. OBJECTIVES: The goal of this study was to improve processing of densely sampled noncontact unipolar electrograms to yield reliable high-resolution activation and repolarization maps. METHODS: Endocardial noncontact unipolar electrograms were both simulated and recorded in pig left ventricle. Electrical activity on the endocardial surface was processed in terms of a pseudo-electric field. Activation and repolarization times were calculated by using an amplitude-weighted average on QRS and T waves (ie, the E-field method). This was compared vs the conventional Wyatt method on unipolar electrograms. Timing maps were validated against timing on endocardial action potentials in a simulation study. In vivo, activation and repolarization times determined by using this alternative E-field method were validated against simultaneously recorded endocardial monophasic action potentials (MAPs). RESULTS: Simulation showed that the E-field method provides viable measurements of local endocardial action potential activation and repolarization times. In vivo, correlation of E-field activation times with MAP activation times (rE = 0.76; P < 0.001) was similar to those of Wyatt (rWyatt = 0.80, P < 0.001; P[h1:rE > rWyatt] = 0.82); for repolarization times, correlation improved significantly (rE = 0.96, P < 0.001; rWyatt = 0.82, P < 0.001; P[h1:rE > rWyatt] < 0.00001). This resulted in improved correlations of activation-repolarization intervals to endocardial action potential duration on MAP (rE = 0.96, P < 0.001; rWyatt = 0.86, P < 0.001; P[h1:rE > rWyatt] < 0.00001). Spatial beat-to-beat variation of repolarization could only be calculated by using the E-field methodology and correlated well with the MAP beat-to-beat variation of repolarization (rE = 0.76; P = 0.001). CONCLUSIONS: The E-field method substantially enhances information from endocardial noncontact electrogram data, allowing for dense maps of activation and repolarization times and derived parameters.


Assuntos
Arritmias Cardíacas , Ventrículos do Coração , Animais , Suínos , Arritmias Cardíacas/diagnóstico , Potenciais de Ação/fisiologia , Endocárdio/fisiologia
3.
Cell Calcium ; 114: 102769, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390591

RESUMO

The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.

4.
Circ Arrhythm Electrophysiol ; 16(5): e011677, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37128895

RESUMO

BACKGROUND: After myocardial infarction, the infarct border zone (BZ) is the dominant source of life-threatening arrhythmias, where fibrosis and abnormal repolarization create a substrate for reentry. We examined whether repolarization abnormalities are heterogeneous within the BZ in vivo and could be related to heterogeneous cardiomyocyte remodeling. METHODS: Myocardial infarction was induced in domestic pigs by 120-minute ischemia followed by reperfusion. After 1 month, remodeling was assessed by magnetic resonance imaging, and electroanatomical mapping was performed to determine the spatial distribution of activation-recovery intervals. Cardiomyocytes were isolated and tissue samples collected from the BZ and remote regions. Optical recording allowed assessment of action potential duration (di-8-ANEPPS, stimulation at 1 Hz, 37 °C) of large cardiomyocyte populations while gene expression in cardiomyocytes was determined by single nuclear RNA sequencing. RESULTS: In vivo, activation-recovery intervals in the BZ tended to be longer than in remote with increased spatial heterogeneity evidenced by a greater local SD (3.5±1.3 ms versus remote: 2.0±0.5 ms, P=0.036, npigs=5). Increased activation-recovery interval heterogeneity correlated with enhanced arrhythmia susceptibility. Cellular population studies (ncells=635-862 cells per region) demonstrated greater heterogeneity of action potential duration in the BZ (SD, 105.9±17.0 ms versus remote: 73.9±8.6 ms; P=0.001; npigs=6), which correlated with heterogeneity of activation-recovery interval in vivo. Cell-cell gene expression heterogeneity in the BZ was evidenced by increased Euclidean distances between nuclei of the BZ (12.1 [9.2-15.0] versus 10.6 [7.5-11.6] in remote; P<0.0001). Differentially expressed genes characterizing BZ cardiomyocyte remodeling included hypertrophy-related and ion channel-related genes with high cell-cell variability of expression. These gene expression changes were driven by stress-responsive TFs (transcription factors). In addition, heterogeneity of left ventricular wall thickness was greater in the BZ than in remote. CONCLUSIONS: Heterogeneous cardiomyocyte remodeling in the BZ is driven by uniquely altered gene expression, related to heterogeneity in the local microenvironment, and translates to heterogeneous repolarization and arrhythmia vulnerability in vivo.


Assuntos
Infarto do Miocárdio , Miócitos Cardíacos , Suínos , Animais , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Sus scrofa , Imageamento por Ressonância Magnética , Remodelação Ventricular/fisiologia
7.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919695

RESUMO

Connexins are crucial cardiac proteins that form hemichannels and gap junctions. Gap junctions are responsible for the propagation of electrical and chemical signals between myocardial cells and cells of the specialized conduction system in order to synchronize the cardiac cycle and steer cardiac pump function. Gap junctions are normally open, while hemichannels are closed, but pathological circumstances may close gap junctions and open hemichannels, thereby perturbing cardiac function and homeostasis. Current evidence demonstrates an emerging role of hemichannels in myocardial ischemia and arrhythmia, and tools are now available to selectively inhibit hemichannels without inhibiting gap junctions as well as to stimulate hemichannel incorporation into gap junctions. We review available experimental evidence for hemichannel contributions to cellular pro-arrhythmic events in ventricular and atrial cardiomyocytes, and link these to insights at the level of molecular control of connexin-43-based hemichannel opening. We conclude that a double-edged approach of both preventing hemichannel opening and preserving gap junctional function will be key for further research and development of new connexin-based experimental approaches for treating heart disease.


Assuntos
Cardiopatias , Isquemia Miocárdica , Humanos , Conexinas/genética , Conexinas/metabolismo , Antiarrítmicos/metabolismo , Junções Comunicantes/metabolismo , Isquemia Miocárdica/tratamento farmacológico , Isquemia Miocárdica/metabolismo , Cardiopatias/metabolismo
11.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203255

RESUMO

Heart failure is a leading cause of death that develops subsequent to deleterious hypertrophic cardiac remodelling. MAPK pathways play a key role in coordinating the induction of gene expression during hypertrophy. Induction of the immediate early gene (IEG) response including activator protein 1 (AP-1) complex factors is a necessary and early event in this process. How MAPK and IEG expression are coupled during cardiac hypertrophy is not resolved. Here, in vitro, in rodent models and in human samples, we demonstrate that MAPK-stimulated IEG induction depends on the mitogen and stress-activated protein kinase (MSK) and its phosphorylation of histone H3 at serine 28 (pH3S28). pH3S28 in IEG promoters in turn recruits Brg1, a BAF60 ATP-dependent chromatin remodelling complex component, initiating gene expression. Without MSK activity and IEG induction, the hypertrophic response is suppressed. These studies provide new mechanistic insights into the role of MAPK pathways in signalling to the epigenome and regulation of gene expression during cardiac hypertrophy.


Assuntos
Montagem e Desmontagem da Cromatina , Histonas , Cardiomegalia/genética , Expressão Gênica , Histonas/metabolismo , Humanos , Fosforilação , Serina/metabolismo
12.
Stem Cell Reports ; 17(2): 352-368, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35090586

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle disorder caused by mutations in the Dystrophin gene. Cardiomyopathy is a major cause of early death. We used DMD-patient-specific human induced pluripotent stem cells (hiPSCs) to model cardiomyopathic features and unravel novel pathologic insights. Cardiomyocytes (CMs) differentiated from DMD hiPSCs showed enhanced premature cell death due to significantly elevated intracellular reactive oxygen species (ROS) resulting from depolarized mitochondria and increased NADPH oxidase 4 (NOX4). CRISPR-Cas9 correction of Dystrophin restored normal ROS levels. ROS reduction by N-acetyl-L-cysteine (NAC), ataluren (PTC124), and idebenone improved hiPSC-CM survival. We show that oxidative stress in DMD hiPSC-CMs was counteracted by stimulating adenosine triphosphate (ATP) production. ATP can bind to NOX4 and partially inhibit the ROS production. Considering the complexity and the early cellular stress responses in DMD cardiomyopathy, we propose targeting ROS production and preventing detrimental effects of NOX4 on DMD CMs as promising therapeutic strategy.


Assuntos
Distrofia Muscular de Duchenne/patologia , NADPH Oxidase 4/metabolismo , Estresse Oxidativo , Acetilcisteína/farmacologia , Trifosfato de Adenosina/metabolismo , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Distrofina/genética , Distrofina/metabolismo , Edição de Genes , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Distrofia Muscular de Duchenne/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxidiazóis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
14.
Front Cell Dev Biol ; 9: 737840, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805146

RESUMO

Human induced pluripotent stem cells derived cardiomyocytes (hiPSC-CM) are increasingly used to study genetic diseases on a human background. However, the lack of a fully mature adult cardiomyocyte phenotype of hiPSC-CM may be limiting the scope of these studies. Muscular dystrophies and concomitant cardiomyopathies result from mutations in genes encoding proteins of the dystrophin-associated protein complex (DAPC), which is a multi-protein membrane-spanning complex. We examined the expression of DAPC components in hiPSC-CM, which underwent maturation in 2D and 3D culture protocols. The results were compared with human adult cardiac tissue and isolated cardiomyocytes. We found that similarly to adult cardiomyocytes, hiPSC-CM express dystrophin, in line with previous studies on Duchenne's disease. ß-dystroglycan was also expressed, but, contrary to findings in adult cardiomyocytes, none of the sarcoglycans nor α-dystroglycan were, despite the presence of their mRNA. In conclusion, despite the robust expression of dystrophin, the absence of several other DAPC protein components cautions for reliance on commonly used protocols for hiPSC-CM maturation for functional assessment of the complete DAPC.

15.
Cells ; 10(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34685609

RESUMO

Ischemic heart disease is the most common cause of lethal ventricular arrhythmias and sudden cardiac death (SCD). In patients who are at high risk after myocardial infarction, implantable cardioverter defibrillators are the most effective treatment to reduce incidence of SCD and ablation therapy can be effective for ventricular arrhythmias with identifiable culprit lesions. Yet, these approaches are not always successful and come with a considerable cost, while pharmacological management is often poor and ineffective, and occasionally proarrhythmic. Advances in mechanistic insights of arrhythmias and technological innovation have led to improved interventional approaches that are being evaluated clinically, yet pharmacological advancement has remained behind. We review the mechanistic basis for current management and provide a perspective for gaining new insights that centre on the complex tissue architecture of the arrhythmogenic infarct and border zone with surviving cardiac myocytes as the source of triggers and central players in re-entry circuits. Identification of the arrhythmia critical sites and characterisation of the molecular signature unique to these sites can open avenues for targeted therapy and reduce off-target effects that have hampered systemic pharmacotherapy. Such advances are in line with precision medicine and a patient-tailored therapy.


Assuntos
Cardiomiopatias/complicações , Cardiomiopatias/terapia , Ventrículos do Coração/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/terapia , Animais , Arritmias Cardíacas , Cardiomiopatias/fisiopatologia , Humanos , Isquemia Miocárdica/fisiopatologia , Medição de Risco , Remodelação Vascular
16.
J Physiol ; 599(21): 4727-4729, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34533837
17.
Heart Rhythm ; 18(11): 1976-1987, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34371193

RESUMO

BACKGROUND: Sympathetic activation in ischemic heart disease can cause lethal arrhythmias. These often are preceded by premature ventricular complexes (PVCs), which at the cellular level could result from delayed afterdepolarizations. OBJECTIVE: The purpose of this study was to identify and map vulnerable areas for arrhythmia initiation after myocardial infarction (MI) and to explore the link between PVCs and cellular events. METHODS: Anterior-septal wall MI was induced by 120 minutes of coronary occlusion followed by reperfusion (27 MI and 16 sham pigs). After 4 weeks, EnSite™ electroanatomic mapping combined with imaging was performed to precisely locate PVC sites of origin and subsequently record monophasic action potentials. Cardiomyocytes were isolated from different regions to study regional cellular remodeling. Isoproterenol was used as a surrogate for adrenergic stimulation both in vivo and in cardiomyocytes. RESULTS: PVCs originated from the MI border zone (BZ) and occurred at discrete areas with clusters of PVCs within the BZ. At these sites, frequent delayed afterdepolarizations and occasional associated spontaneous action potentials translating to a PVC were present. Cardiomyocytes isolated from the MI BZ exhibited more spontaneous action potentials than cardiomyocytes from remote regions. Sensitivity to adrenergic stimulation was increased in MI, in vivo and in cardiomyocytes. In awake, freely moving MI animals, frequent PVCs, ventricular arrhythmia, and sudden cardiac death occurred spontaneously at moderately elevated heart rates. CONCLUSION: Post-MI, arrhythmias initiate from discrete vulnerable areas within the BZ, where delayed afterdepolarizations, related to increased adrenergic response of BZ cardiomyocytes, can generate PVCs.


Assuntos
Mapeamento Epicárdico , Isquemia Miocárdica/fisiopatologia , Complexos Ventriculares Prematuros/fisiopatologia , Animais , Modelos Animais de Doenças , Isoproterenol , Imagem Cinética por Ressonância Magnética , Isquemia Miocárdica/diagnóstico por imagem , Suínos , Complexos Ventriculares Prematuros/diagnóstico por imagem
18.
J Cell Sci ; 134(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34125209

RESUMO

Excitation-contraction coupling (ECC) relies on temporally synchronized sarcoplasmic reticulum (SR) Ca2+ release via ryanodine receptors (RyRs) at dyadic membrane compartments. Neurohormones, such as endothelin-1 (ET-1), that act via Gαq-associated G protein-coupled receptors (GPCRs) modulate Ca2+ dynamics during ECC and induce SR Ca2+ release events involving Ca2+ release via inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs). How the relatively modest Ca2+ release via InsP3Rs elicits this action is not resolved. Here, we investigated whether the actions of InsP3Rs on Ca2+ handling during ECC were mediated by a direct influence on dyadic Ca2+ levels and whether this mechanism contributes to the effects of ET-1. Using a dyad-targeted genetically encoded Ca2+ reporter, we found that InsP3R activation augmented dyadic Ca2+ fluxes during Ca2+ transients and increased Ca2+ sparks. RyRs were required for these effects. These data provide the first direct demonstration of GPCR and InsP3 effects on dyadic Ca2+, and support the notion that Ca2+ release via InsP3Rs influences Ca2+ transients during ECC by facilitating the activation and recruitment of proximal RyRs. We propose that this mechanism contributes to neurohormonal modulation of cardiac function. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cálcio , Miócitos Cardíacos , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
20.
J Clin Invest ; 131(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33621213

RESUMO

Cx43, a major cardiac connexin, forms precursor hemichannels that accrue at the intercalated disc to assemble as gap junctions. While gap junctions are crucial for electrical conduction in the heart, little is known about the potential roles of hemichannels. Recent evidence suggests that inhibiting Cx43 hemichannel opening with Gap19 has antiarrhythmic effects. Here, we used multiple electrophysiology, imaging, and super-resolution techniques to understand and define the conditions underlying Cx43 hemichannel activation in ventricular cardiomyocytes, their contribution to diastolic Ca2+ release from the sarcoplasmic reticulum, and their impact on electrical stability. We showed that Cx43 hemichannels were activated during diastolic Ca2+ release in single ventricular cardiomyocytes and cardiomyocyte cell pairs from mice and pigs. This activation involved Cx43 hemichannel Ca2+ entry and coupling to Ca2+ release microdomains at the intercalated disc, resulting in enhanced Ca2+ dynamics. Hemichannel opening furthermore contributed to delayed afterdepolarizations and triggered action potentials. In single cardiomyocytes, cardiomyocyte cell pairs, and arterially perfused tissue wedges from failing human hearts, increased hemichannel activity contributed to electrical instability compared with nonfailing rejected donor hearts. We conclude that microdomain coupling between Cx43 hemichannels and Ca2+ release is a potentially novel, targetable mechanism of cardiac arrhythmogenesis in heart failure.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Conexina 43/metabolismo , Ventrículos do Coração/metabolismo , Miócitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Animais , Conexina 43/genética , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Camundongos , Camundongos Knockout , Retículo Sarcoplasmático/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA