Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674640

RESUMO

Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.

2.
Arch Virol ; 169(5): 102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630315

RESUMO

A highly divergent bovine calicivirus was identified in an Indian calf with enteritis. The whole genome of this virus was sequenced, revealing distinct amino acid motifs in the polyprotein encoded by open reading frame 1 (ORF1) that are unique to caliciviruses. Phylogenetic analysis showed that it was related to members of the genus Nebovirus of the family Caliciviridae. Although it showed only 33.7-34.2% sequence identity in the VP1 protein to the nebovirus prototype strains, it showed 90.6% identity in VP1 to Kirklareli virus, a nebovirus detected in calves with enteritis in Turkey in 2012. An in-house-designed and optimized reverse transcription polymerase chain reaction (RT-PCR) assay was used to screen 120 archived bovine diarrhoeic fecal samples, 40 each from the Indian states of Uttar Pradesh, Haryana, and Himachal Pradesh, revealing frequent circulation of these divergent caliciviruses in the bovine population, with an overall positivity rate of 64.17% (77/120). This underscores the importance of conducting a comprehensive investigation of the prevalence of these divergent caliciviruses and assessing their associations with other pathogens responsible for enteritis in India.


Assuntos
Caliciviridae , Enterite , Vírus de RNA , Bovinos , Animais , Filogenia , Caliciviridae/genética , Índia/epidemiologia
3.
Virology ; 590: 109906, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38096748

RESUMO

The current study reports the in-depth analysis of the epidemiology, risk factors, and molecular characterization of a complete genome of Enterovirus G (EV-G) isolated from Indian pigs. We analysed several genes of EV-G isolates collected from various provinces in India, using phylogenetic analysis, recombination detection, SimPlot, and selection pressure analyses. Our analysis of 534 porcine faecal samples revealed that 11.61% (62/534) of the samples were positive for EV-G. While the G6 genotype was the most predominant, our findings showed that Indian EV-G strains also clustered with EV-G types G1, G6, G8, and G9. Furthermore, Indian EV-G strains exhibited the highest nucleotide similarity with Vietnamese (81.3%) and Chinese EV-G isolates (80.3%). Moreover, we identified a recombinant Indian EV-G strain with a putative origin from a Japanese isolate and South Korean EV-G isolate. In summary, our findings provide significant insights into the epidemiology, genetic diversity, and evolution of EV-G in India.


Assuntos
Infecções por Enterovirus , Enterovirus , Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/veterinária , Infecções por Enterovirus/genética , Filogenia , Sequenciamento Completo do Genoma , Genótipo , Fatores de Risco , Genoma Viral , Enterovirus/genética
4.
Pathogens ; 12(7)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37513781

RESUMO

The present study reports the detection and molecular characterisation of rotavirus C (RVC) in sloth bears (Melursus ursinus) rescued from urban areas in India. Based on an RVC VP6 gene-targeted diagnostic RT-PCR assay, 48.3% (42/87) of sloth bears tested positive for RVC infection. The VP6, VP7, and NSP4 genes of three sloth bear RVC isolates (UP-SB19, 21, and 37) were further analysed. The VP6 genes of RVC UP-SB21 and 37 isolates were only 37% identical. The sequence identity, TM-score from structure alignment, and selection pressure (dN/dS) of VP6 UP-SB37 with pig and human RVCs isolates were (99.67%, 0.97, and 1.718) and (99.01%, 0.93, and 0.0340), respectively. However, VP6 UP-SB21 has an identity, TM-score, and dN/dS of (84.38%, 1.0, and 0.0648) and (99.63%, 1.0, and 3.7696) with human and pig RVC isolates, respectively. The VP7 genes from UP-SB19 and 37 RVC isolates were 79.98% identical and shared identity, TM-score, and dN/dS of 88.4%, 0.76, and 5.3210, along with 77.98%, 0.77, and 4.7483 with pig and human RVC isolates, respectively. The NSP4 gene of UP-SB37 RVC isolates has an identity, TM-score, and dN/dS of 98.95%, 0.76, and 0.2907, along with 83.12%, 0.34, and 0.2133 with pig and human RVC isolates, respectively. Phylogenetic analysis of the nucleotide sequences of the sloth bear RVC isolates assigned the isolate UP-SB37 to genotype G12, I2 for RVC structural genes VP7 and VP6, and E1 for NSP4 genes, respectively, while isolates UP-SB19 and UP-SB21 were classified as genotype G13 and GI7 based on the structural gene VP7, respectively. The study suggests that the RVCs circulating in the Indian sloth bear population are highly divergent and might have originated from pigs or humans, and further investigation focusing on the whole genome sequencing of the sloth bear RVC isolate may shed light on the virus origin and evolution.

5.
Indian J Med Microbiol ; 44: 100379, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37356827

RESUMO

PURPOSE: Chemiluminescence Immunoassay (CLIA) is high throughput, rapid diagnostic test which has recently come up for the detection of SARS-CoV-2 antigen. The present study evaluated performance of CLIA antigen test in nasopharyngeal swab samples stored at different temperatures for 7 days to simulate the transport conditions and transit time across the country from remote peripheral laboratories to central facilities. MATERIALS AND METHODS: Limit of detection (LOD), sensitivity and specificity of VITROS® SARS-CoV-2 antigen assay was determined using Real-time reverse transcriptase PCR (rRT-PCR) confirmed SARS-CoV-2 positive and negative samples. To detect the effect of storage temperatures on VITROS ®SARS-CoV-2 antigen results, samples were stored at 4 â€‹°C, 25 â€‹°C & 37 â€‹°C for 7 days followed by detection of SARS-CoV-2 nucleocapsid antigen and compared with N-gene rRT-PCR. RESULTS: The VITROS® SARS-CoV-2 antigen test was found to have a sensitivity and specificity of 78.9% and 100% respectively with high sensitivity of 88.1% for samples with Ct â€‹< â€‹30. The LOD of VITROS assay was equivalent to 3800 copies of RNA per reactions as compared to 72 copies per reaction for rRT-PCR. We observed that more than 80% of samples with <30 Ct values could be detected by VITROS SARS-CoV-2 antigen assay at day 7 even when stored at 37 â€‹°C. For samples with Ct values between 26 and 30, on day 7 the positivity rate of N-antigen at 4 â€‹°C was 90.9% and 37 â€‹°C was 63.6%. CONCLUSIONS: CLIA testing can be carried out for the detection of SARS-CoV-2 N-protein in NP-swab samples transported in cold chain even with 7 days transit time, particularly for Ct â€‹< â€‹30 samples which represents cases with higher transmissibility. As drop in positivity for VITROS assay was lower as compared to rRT-PCR on day 7 in cold chain-maintained samples, the assay can be useful to screen samples received from remote peripheral areas before performing rRT-PCR.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , Luminescência , SARS-CoV-2 , Temperatura , Nasofaringe , Imunoensaio , Sensibilidade e Especificidade
6.
Probiotics Antimicrob Proteins ; 14(6): 1054-1066, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676503

RESUMO

The objective of this study was to assess the efficacy of a microencapsulated probiotic as an adjunct therapy in rotavirus-positive diarrhea of neonatal calves that received supportive treatment or supportive along with microencapsulated probiotic treatment, for 5 days. We examined whether microencapsulated Lactobacillus acidophilus NCDC15 probiotic treatment in rotavirus-infected diarrhoetic calves led to faster resolution of diarrhea, amelioration of zinc-copper imbalance, improved the immunoglobulin A and immunoglobulin G, and decreased the inflammatory markers in serum. Calves with rotavirus-positive diarrhea < 4-week age and fecal scores ≥ 2 were randomly assigned into two groups. The supportive along with microencapsulated probiotic treatment significantly (p < 0.05) increased zinc and immunoglobulin A concentrations and decreased copper, tumor necrosis factor-α, and nitric oxide level in serum on days 3 and 5 from pretreatment values; the immunoglobulin G concentration was elevated (p < 0.05) on day 5. The mean resolution time of abnormal fecal score was 5.3 and 3.3 days in supportive treatment and supportive along with microencapsulated probiotic groups, respectively, in log-rank Mantel-Cox test. The calves in the supportive along with microencapsulated probiotic treatment group had faster resolution of diarrhea than supportive treatment group in Dunn's multiple comparisons test. This study demonstrates that supportive treatment along with microencapsulated probiotic administered to naturally rotavirus-infected diarrhoetic calves at onset of diarrhea led to faster resolution of diarrhea, improved zinc and immunoglobulin levels, and decreased the inflammatory parameters in serum of rotavirus-infected diarrhoetic calves.


Assuntos
Probióticos , Rotavirus , Animais , Bovinos , Cobre , Diarreia/tratamento farmacológico , Diarreia/veterinária , Fezes , Homeostase , Imunoglobulina A , Imunoglobulina G , Zinco
7.
Front Mol Biosci ; 8: 607886, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395515

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.

8.
J Zoo Wildl Med ; 52(1): 343-347, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827197

RESUMO

Pygmy hogs (Porcula salvania) are the smallest and rarest wild suid. It is categorized as a Critically Endangered species as per the Red List of the International Union for Conservation of Nature. This study reports the first detection of a single-stranded RNA virus species, Aichivirus C, belonging to the genus Kobuvirus (KobV) and the family Picornaviridae, in pygmy hogs. KobV species are identified as a cause of acute gastroenteritis among children in India. As of now, there exists no report on the detection of KobV in animals from India. We used a detection assay based on reverse transcription-polymerase chain reaction for KobV screening in pygmy hogs from a conservation center in India. The 3D polymerase gene-based molecular analysis revealed KobV presence in the Indian wild suid, pygmy hogs. Of the 15 samples tested, three were found positive for picornaviruses and were negative for rotavirus A, rotavirus C, astrovirus, picobirnavirus and caliciviruses. Nucleotide-based sequence analysis of the partial 3D polymerase gene revealed close identity with porcine KobV from the Czech Republic (JX232619, 90.6%-91.6%) and Hungary (NC_011829, 89.8%-91.6%), wherein one of the current study strains clustered with the Czech Republic JX232619 strain in the phylogenetic tree. Further investigation of the role of KobV in health and disease of pygmy hogs is warranted.


Assuntos
Espécies em Perigo de Extinção , Kobuvirus/isolamento & purificação , Suínos/virologia , Animais , Fezes/virologia , Feminino , Índia/epidemiologia , Masculino
9.
Rev Med Virol ; 31(5): 1-11, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33476063

RESUMO

The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid-19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI-based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid-19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI-based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid-19 cases. AI-based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid-19 pandemic.


Assuntos
Inteligência Artificial , COVID-19/epidemiologia , Atenção à Saúde , Humanos , Pandemias
10.
Brief Bioinform ; 22(2): 1006-1022, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33377145

RESUMO

Interaction of SARS-CoV-2 spike glycoprotein with the ACE2 cell receptor is very crucial for virus attachment to human cells. Selected mutations in SARS-CoV-2 S-protein are reported to strengthen its binding affinity to mammalian ACE2. The N501T mutation in SARS-CoV-2-CTD furnishes better support to hotspot 353 in comparison with SARS-CoV and shows higher affinity for receptor binding. Recombination analysis exhibited higher recombination events in SARS-CoV-2 strains, irrespective of their geographical origin or hosts. Investigation further supports a common origin among SARS-CoV-2 and its predecessors, SARS-CoV and bat-SARS-like-CoV. The recombination events suggest a constant exchange of genetic material among the co-infecting viruses in possible reservoirs and human hosts before SARS-CoV-2 emerged. Furthermore, a comprehensive analysis of codon usage bias (CUB) in SARS-CoV-2 revealed significant CUB among the S-genes of different beta-coronaviruses governed majorly by natural selection and mutation pressure. Various indices of codon usage of S-genes helped in quantifying its adaptability in other animal hosts. These findings might help in identifying potential experimental animal models for investigating pathogenicity for drugs and vaccine development experiments.


Assuntos
Evolução Biológica , Uso do Códon , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Humanos , Modelos Animais , Mutação , RNA de Transferência/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
11.
Hum Vaccin Immunother ; 16(12): 2954-2962, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991235

RESUMO

COVID-19 caused by the virus SARS-CoV-2 has gripped essentially all countries in the world, and has infected millions and killed hundreds of thousands of people. Several innovative approaches are in development to restrain the spread of SARS-CoV-2. In particular, BCG, a vaccine against tuberculosis (TB), is being considered as an alternative therapeutic modality. BCG vaccine is known to induce both humoral and adaptive immunities, thereby activating both nonspecific and cross-reactive immune responses in the host, which combined could effectively resist other pathogens including SARS-CoV-2. Notably, some studies have revealed that SARS-CoV-2 infectivity, case positivity, and mortality rate have been higher in countries that have not adopted BCG vaccination than in countries that have done so. This review presents an overview of the concepts underlying BCG vaccination and its nonspecific immuological effects and protection, resulting in 'trained immunity' and potential utility for resisting COVID-19.


Assuntos
Vacina BCG/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Reposicionamento de Medicamentos/métodos , Imunidade Adaptativa/efeitos dos fármacos , Imunidade Adaptativa/imunologia , Vacina BCG/imunologia , Vacina BCG/farmacologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , Reações Cruzadas/efeitos dos fármacos , Reações Cruzadas/imunologia , Humanos , Pandemias , Tuberculose/imunologia , Tuberculose/prevenção & controle
12.
Pathogens ; 9(7)2020 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605194

RESUMO

The technology-driven world of the 21st century is currently confronted with a major threat to humankind, represented by the coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2). As of now, COVID-19 has affected more than 6 million confirmed cases and took 0.39 million human lives. SARS-CoV-2 spreads much faster than its two ancestors, SARS-CoV and Middle East respiratory syndrome-CoV (MERS-CoV), but has low fatality rates. Our analyses speculate that the efficient replication and transmission of SARS-CoV-2 might be due to the high-density basic amino acid residues, preferably positioned in close proximity at both the furin-like cleavage sites (S1/S2 and S2') within the spike protein. Given the high genomic similarities of SARS-CoV-2 to bat SARS-like CoVs, it is likely that bats serve as a reservoir host for its progenitor. Women and children are less susceptible to SARS-CoV-2 infection, while the elderly and people with comorbidities are more prone to serious clinical outcomes, which may be associated with acute respiratory distress syndrome (ARDS) and cytokine storm. The cohesive approach amongst researchers across the globe has delivered high-end viral diagnostics. However, home-based point-of-care diagnostics are still under development, which may prove transformative in current COVID-19 pandemic containment. Similarly, vaccines and therapeutics against COVID-19 are currently in the pipeline for clinical trials. In this review, we discuss the noteworthy advancements, focusing on the etiological viral agent, comparative genomic analysis, population susceptibility, disease epidemiology and diagnosis, animal reservoirs, laboratory animal models, disease transmission, therapeutics, vaccine challenges, and disease mitigation measures.

13.
Clin Microbiol Rev ; 33(4)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32580969

RESUMO

SUMMARYIn recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.


Assuntos
Infecções por Coronavirus , Pandemias , Pneumonia Viral , Animais , Betacoronavirus/fisiologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Pneumonia Viral/terapia , Pneumonia Viral/virologia , SARS-CoV-2
14.
Pathogens ; 9(6)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580503

RESUMO

: Classical swine fever (CSF) is an economically significant, multi-systemic, highly contagious viral disease of swine world over. The disease is notifiable to the World Organization for Animal Health (OIE) due to its enormous consequences on porcine health and the pig industry. In India, the pig population is 9.06 million and contributes around 1.7% of the total livestock population. The pig industry is not well organized and is mostly concentrated in the eastern and northeastern states of the country (~40% of the country's population). Since the first suspected CSF outbreak in India during 1944, a large number of outbreaks have been reported across the country, and CSF has acquired an endemic status. As of date, there is a scarcity of comprehensive information on CSF from India. Therefore, in this review, we undertook a systematic review to compile and evaluate the prevalence and genetic diversity of the CSF virus situation in the porcine population from India, targeting particular virus genes sequence analysis, published reports on prevalence, pathology, and updates on indigenous diagnostics and vaccines. The CSF virus (CSFV) is genetically diverse, and at least three phylogenetic groups are circulating throughout the world. In India, though genotype 1.1 predominates, recently published reports point toward increasing evidence of co-circulation of sub-genotype 2.2 followed by 2.1. Sequence identities and phylogenetic analysis of Indian CSFV reveal high genetic divergence among circulating strains. In the meta-analysis random-effects model, the estimated overall CSF prevalence was 35.4%, encompassing data from both antigen and antibody tests, and region-wise sub-group analysis indicated variable incidence from 25% in the southern to nearly 40% in the central zone, eastern, and northeastern regions. A country-wide immunization approach, along with other control measures, has been implemented to reduce the disease incidence and eliminate the virus in time to come.

15.
Vet Q ; 40(1): 68-76, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32036774

RESUMO

Coronaviruses are the well-known cause of severe respiratory, enteric and systemic infections in a wide range of hosts including man, mammals, fish, and avian. The scientific interest on coronaviruses increased after the emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) outbreaks in 2002-2003 followed by Middle East Respiratory Syndrome CoV (MERS-CoV). This decade's first CoV, named 2019-nCoV, emerged from Wuhan, China, and declared as 'Public Health Emergency of International Concern' on January 30th, 2020 by the World Health Organization (WHO). As on February 4, 2020, 425 deaths reported in China only and one death outside China (Philippines). In a short span of time, the virus spread has been noted in 24 countries. The zoonotic transmission (animal-to-human) is suspected as the route of disease origin. The genetic analyses predict bats as the most probable source of 2019-nCoV though further investigations needed to confirm the origin of the novel virus. The ongoing nCoV outbreak highlights the hidden wild animal reservoir of the deadly viruses and possible threat of spillover zoonoses as well. The successful virus isolation attempts have made doors open for developing better diagnostics and effective vaccines helping in combating the spread of the virus to newer areas.


Assuntos
Betacoronavirus , Quirópteros/virologia , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/epidemiologia , Reservatórios de Doenças/veterinária , Animais , Betacoronavirus/classificação , Betacoronavirus/genética , COVID-19 , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Doenças Transmissíveis Emergentes/veterinária , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Reservatórios de Doenças/virologia , Humanos , Pandemias , Filogenia , Pneumonia Viral , SARS-CoV-2 , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/virologia
16.
Front Vet Sci ; 7: 606661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585597

RESUMO

The surveillance studies for the presence of caprine rotavirus A (RVA) are limited in India, and the data for the whole-genome analysis of the caprine RVA is not available. This study describes the whole-genome-based analysis of a caprine rotavirus A strain, RVA/Goat-wt/IND/K-98/2015, from a goat kid in India. The genomic analysis revealed that the caprine RVA strain K-98, possess artiodactyl-like and DS-1 human-like genome constellation G8P[1]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The three structural genes (VP2, VP4, and VP7) were close to caprine host having nucleotide-based identity range between 97.5 and 98.9%. Apart from them, other gene segments showed similarity with either bovine or human like genes, ultimately pointing toward a common evolutionary origin having an artiodactyl-type backbone of strain K-98. Phylogenetically, the various genes of the current study isolate also clustered inside clades comprising Human-Bovine-Caprine isolates from worldwide. The current findings add to the knowledge on caprine rotaviruses and might play a substantial role in designing future vaccines or different alternative strategies combating such infections having public health significance. To the best of our knowledge, this is the first report on the whole-genome characterization of a caprine RVA G8P[1] strain from India. Concerning the complex nature of the K-98 genome, whole-genome analyses of more numbers of RVA strains from different parts of the country are needed to comprehend the genomic nature and genetic diversity among caprine RVA.

17.
Trop Anim Health Prod ; 51(6): 1455-1465, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30790158

RESUMO

A restricted-randomized, single-blinded, placebo-controlled clinical trial was conducted to examine whether immunomodulating dose of levamisole (LMS) can stimulate certain antiviral immune markers by measuring the concentrations of interferon-γ (IFN-γ), nitric oxide (NOx), and total immunoglobulin G (IgG); prevents the gut injury; and reduces fecal consistency and dehydration scores in rotavirus type A (RVA)-positive piglet diarrhea. The trial was executed between November 2015 and May 2016 in an institute owned experimental swine production farm. The naturally RVA-exposed diarrheic piglets were used in the study. The piglets born between November 2015 and May 2016, age group of 0 to 2 weeks and confirmed for RVA-positive diarrhea, were randomized to receive supportive treatment (ST) or ST along with levamisole (LMS + ST) at immunomodulating dose. Simultaneously, six piglets were randomly selected from healthy population and kept as placebo control. The primary outcome was reduction of fecal consistency and dehydration scores (≤ 1) over the trial period. The secondary outcome was reduction of concentration of gut injury marker and stimulation of immunomodulatory function. The LMS + ST treatment progressively improved the total leukocyte, neutrophil count, IgG concentration (p < 0.05), and reduced the intestinal fatty acid-binding protein 2 (IFABP-2) concentration in RV-positive diarrheic piglets than ST only. Although NOx and IFN-γ concentrations were enhanced initially on day 3, however, the values reduced significantly on day 5 in response to LMS + ST compared to ST. Interestingly, the scores of fecal consistency and dehydration of RVA-positive diarrheic piglets were dropped much earlier (on day 3) in response to LMS + ST than ST alone. The results indicate that LMS along with supportive treatment non-specifically modulated innate immunity and restored intestinal gut health, and thus, LMS may represent an additional therapeutic agent for management of RVA-inflicted piglet diarrhea.


Assuntos
Imunidade Inata/efeitos dos fármacos , Levamisol/farmacologia , Infecções por Rotavirus/veterinária , Doenças dos Suínos/virologia , Animais , Desidratação/veterinária , Diarreia/veterinária , Fezes/química , Interferon gama/metabolismo , Intestinos , Levamisol/administração & dosagem , Óxidos de Nitrogênio/metabolismo , Distribuição Aleatória , Rotavirus/fisiologia , Suínos , Doenças dos Suínos/tratamento farmacológico
18.
Transbound Emerg Dis ; 66(1): 47-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30379411

RESUMO

Porcine astroviruses (PAstVs) have extended their distribution globally and have a high prevalence; however, their clinical significance is still under investigation. Thus far, information about their prevalence and diversity in the Indian pig population is unknown. This study is the first report on the prevalence and genetic characterization of PAstVs in diarrhoeic piglets in India. From January 2013 to December 2017, 757 samples were screened using an RT-PCR assay and PAstV infection was detected in 17.6% (133/757) pigs. Of the 133 positive samples, 79 (59.4%) were positive for PAstV alone, whereas 54 (40.6%) were found to be co-infected with porcine rotavirus A (PoRVA). Phylogenetic analysis of RdRp/capsid gene region revealed high genetic heterogeneity among PAstV sequences, with a predominance of PAstV lineage 4 and detection of lineage 2. The lineage 4 PAstVs exhibited 61.2%-94.5% sequence similarity at the nucleotide level to other reported sequences, whereas lineage 2 strain shared 66.0%-71.6% sequence identity with cognate sequences of the same lineage. This is the first report on PAstV and circulation of lineages 4 and 2 in India. Further, phylogenetic analysis indicates a multiphyletic origin of PAstV strains and suggests cross-border circulation of PAstVs with a similar genetic configuration in Asian countries.


Assuntos
Infecções por Astroviridae/veterinária , Diarreia/veterinária , Mamastrovirus/genética , Doenças dos Suínos/epidemiologia , Animais , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/virologia , Proteínas do Capsídeo/genética , Diarreia/epidemiologia , Diarreia/virologia , Fezes/virologia , Variação Genética , Genoma Viral/genética , Índia/epidemiologia , Mamastrovirus/isolamento & purificação , Prevalência , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/virologia
19.
Open Virol J ; 12: 99-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288198

RESUMO

Since the unexpected discovery of picobirnaviruses (PBV) in 1988, they have been reported in many animals including mammals and birds, which comprises both terrestrial and marine species. Due to their divergent characteristics to other viral taxa they are classified into a new family Picobirnaviridae. Although their pathogenicity and role in causing diarrhea still remains a question since they have been discovered in symptomatic and asymptomatic cases both. Recent studies employing state-of-art molecular tools have described their presence in various clinical samples, like stool samples from different mammals and birds, respiratory tracts of pigs and humans, sewage water, different foods, etc. Furthermore, their epidemiological status from different parts of the world in different hosts has also increased. Due to their diverse host and irregular host pattern their role in causing diarrhea remains alien. The heterogeneity nature can be ascribed to segmented genome of PBV, which renders them prone to continuous reassortment. Studies have been hampered on PBVs due to their non-adaptability to cell culture system. Here, we describe the molecular epidemiological data on PBVs in India and discusses the overall status of surveillance studies carried out till date in India.

20.
Infect Genet Evol ; 63: 39-42, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29772398

RESUMO

Picobirnavirus (PBV) is recognized as a putative cause of diarrhea and respiratory illnesses. Although PBV has been reported in several mammalian (including humans) and avian host species, data pertaining to its presence in small ruminants are limited. We report, here, PBV infection in small ruminants (ovine and caprine), in India. From January 2015 to December 2017, 400 samples were tested for the presence of PBV, using an RT-PCR assay specific for the genome segment-2. The overall rate of PBV infection was 35.75% (143/400), being higher in caprines (42.35%, 83/196) than in ovines (29.42%, 60/204). Viral genogrouping showed the predominance of PBV genogroup I (GG-I; 53.15%, 76/173), the detection of genogroup II (GG-II; 3.49%, 5/143), a concomitant infection with GG-I and GG-II (38.47%, 55/143), and un-typeable strains (4.9%, 7/143). Of note, these PBV strains exhibit low sequence identity (11.2% to 70.7%) to other reported PBV isolates from humans and other animals. By phylogenetic analysis, camel PBV isolates from the United Arab Emirates (UAE) and the reference human GG-I strain (1-CHN-97) from China were found to be the nearest neighbors of PBV strains. Furthermore, sequence analysis revealed the possible appearance of a new genogroup/genetic cluster and the existence of high genetic heterogeneity in the circulating PBV strains. Although much remains to be understood about the epidemiology and impact of PBV, the present study demonstrates the high prevalence of GG-I, the detection of GG-II, and the possible emergence of new genogroup/genetic cluster in small ruminant populations in India.


Assuntos
Doenças das Cabras/virologia , Picobirnavirus/genética , Infecções por Vírus de RNA/veterinária , Doenças dos Ovinos/virologia , Animais , Doenças das Cabras/epidemiologia , Cabras , Índia/epidemiologia , Filogenia , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Ovinos , Doenças dos Ovinos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA