Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Phys Rev Lett ; 126(15): 157401, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929250

RESUMO

Terahertz vortex beams with different superposition of the orbital angular momentum l=±1, ±2, ±3, and ±4 and spin angular momentum σ=±1 were used to study antiferromagnetic (AFM) resonances in TbFe_{3}(BO_{3})_{4} and Ni_{3}TeO_{6} single crystals. In both materials we observed a strong vortex beam dichroism for the AFM resonances that are split in external magnetic field. The magnitude of the vortex dichroism is comparable to that for conventional circular dichroism due to σ. The selection rules at the AFM resonances are governed by the total angular momentum of the vortex beam: j=σ+l. In particular, for l=±2, ±3, and ±4 the sign of l is shown to dominate over that for conventional circular polarization σ.

2.
Phys Rev Lett ; 122(23): 237401, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31298919

RESUMO

Circularly polarized light with spin angular momentum is one of the most valuable probes of magnetism. We demonstrate that light beams with orbital angular momentum (OAM), or vortex beams, can also couple to magnetism exhibiting dichroisms in a magnetized medium. Resonant optical absorption in a ferrimagnetic crystal depends strongly on both the handedness of the vortex and the direction of the beam propagation with respect to the sample magnetization. This effect exceeds the conventional dichroism for circularly polarized light. Our results demonstrate the high potential of the vortex beams with OAM as a new spectroscopic probe of magnetism in matter.

3.
Phys Rev Lett ; 118(16): 167203, 2017 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-28474940

RESUMO

We report on a new effect caused by the electron-phonon coupling in a stoichiometric rare-earth antiferromagnetic crystal subjected to an external magnetic field, namely, the appearance of a nonzero gap in the spectrum of electronic excitations in an arbitrarily small field. The effect was registered in the low-temperature far-infrared (terahertz) reflection spectra of an easy-axis antiferromagnet PrFe_{3}(BO_{3})_{4} in magnetic fields B_{ext}∥c. Both paramagnetic and magnetically ordered phases (including a spin-flop one) were studied in magnetic fields up to 30 T, and two bifurcation points were observed. We show that the field behavior of the coupled modes can be successfully explained and modeled on the basis of the equation derived in the framework of the theory of coupled electron-phonon modes, with the same field-independent electron-phonon interaction constant |W|=14.8 cm^{-1}.

4.
Rev Sci Instrum ; 84(2): 023901, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464221

RESUMO

We developed far-IR spectroscopic ellipsometer at the U4IR beamline of the National Synchrotron Light Source in Brookhaven National Laboratory. This ellipsometer is able to measure both, rotating analyzer and full-Mueller matrix spectra using rotating retarders, and wire-grid linear polarizers. We utilize exceptional brightness of synchrotron radiation in the broad spectral range between about 20 and 4000 cm(-1). Fourier-transform infrared (FT-IR) spectrometer is used for multi-wavelength data acquisition. The sample stage has temperature variation between 4.2 and 450 K, wide range of θ-2θ angular rotation, χ tilt angle adjustment, and X-Y-Z translation. A LabVIEW-based software controls the motors, sample temperature, and FT-IR spectrometer and also allows to run fully automated experiments with pre-programmed measurement schedules. Data analysis is based on Berreman's 4 × 4 propagation matrix formalism to calculate the Mueller matrix parameters of anisotropic samples with magnetic permeability µ ≠ 1. A nonlinear regression of the rotating analyzer ellipsometry and∕or Mueller matrix (MM) spectra, which are usually acquired at variable angles of incidence and sample crystallographic orientations, allows extraction of dielectric constant and magnetic permeability tensors for bulk and thin-film samples. Applications of this ellipsometer setup for multiferroic and ferrimagnetic materials with µ ≠ 1 are illustrated with experimental results and simulations for TbMnO3 and Dy3Fe5O12 single crystals. We demonstrate how magnetic and electric dipoles, such as magnons and phonons, can be distinguished from a single MM measurement without adducing any modeling arguments. The parameters of magnetoelectric components of electromagnon excitations are determined using MM spectra of TbMnO3.

5.
Phys Rev Lett ; 107(6): 067203, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21902365

RESUMO

Neutron diffraction is used to show that small (∼7 MPa, or 70 bar) uniaxial pressure produces significant changes in the populations of magnetic domains in a single crystal of 2% Nd-doped bismuth ferrite. The magnetic easy plane of the domains converted by the pressure is rotated 60° relative to its original position. These results demonstrate extreme sensitivity of the magnetic properties of multiferroic bismuth ferrite to tiny (less than 10(-4)) elastic strain, as well as weakness of the forces pinning the domain walls between the cycloidal magnetic domains in this material.

6.
Nano Lett ; 9(4): 1369-73, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19253997

RESUMO

Intraconnects, as-grown single-walled carbon nanotubes bridging two metal electrodes, were investigated as gated structures. We show that even with a seemingly "ohmic" contact at zero gate voltage one observes negative differential resistance (NDR) at nonzero gate bias. Large differential photo conductance (DPC) was associated with the NDR effect raising hopes for the fabrication of novel high-speed optoelectronic devices.

7.
Nano Lett ; 8(2): 720-4, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18269259

RESUMO

One of the central challenges of nanoscience is fabrication of nanoscale structures with well-controlled architectures using planar thin-film technology. Herein, we report that ordered nanocheckerboards in ZnMnGaO4 films were grown epitaxially on single-crystal MgO substrates by utilizing a solid-state method of the phase separation-induced self-assembly. The films consist of two types of chemically distinct and regularly spaced nanorods with mutually coherent interfaces, approximately 4 x 4 x 750 nm3 in size and perfectly aligned along the film growth direction. Surprisingly, a significant in-plane strain, more than 2%, from the substrate is globally maintained over the entire film thickness of about 820 nm. The strain energy from Jahn-Teller distortions and the film-substrate lattice mismatch induce the coherent three-dimensional (3D) self-assembled nanostructure, relieving the volume strain energy while suppressing the formation of dislocations.


Assuntos
Cristalização/métodos , Membranas Artificiais , Nanotecnologia/métodos , Nanotubos/química , Nanotubos/ultraestrutura , Óxidos/química , Anisotropia , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA