Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Channels (Austin) ; 18(1): 2355121, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38762910

RESUMO

L-type calcium channels (LTCCs), the major portal for Ca2+ entry into cardiomyocytes, are essential for excitation-contraction coupling and thus play a central role in regulating overall cardiac function. LTCC function is finely tuned by multiple signaling pathways and accessory proteins. Leucine-rich repeat-containing protein 10 (LRRC10) is a little studied cardiomyocyte-specific protein recently identified as a modulator of LTCCs. LRRC10 exerts a remarkable effect on LTCC function, more than doubling L-type Ca2+ current (ICa,L) amplitude in a heterologous expression system by altering the gating of the channels without changing their surface membrane expression. Genetic ablation of LRRC10 expression in mouse and zebrafish hearts leads to a significant reduction in ICa,L density and a slowly progressive dilated cardiomyopathy in mice. Rare sequence variants of LRRC10 have been identified in dilated cardiomyopathy and sudden unexplained nocturnal cardiac death syndrome, but these variants have not been clearly linked to disease. Nevertheless, the DCM-associated variant, I195T, converted LRRC10 from a ICa,L potentiator to a ICa,L suppressor, thus illustrating the wide dynamic range of LRRC10-mediated ICa,L regulation. This review focuses on the contemporary knowledge of LTCC modulation by LRRC10 and discusses potential directions for future investigations.


Assuntos
Canais de Cálcio Tipo L , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo L/genética , Humanos , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
3.
Acta Physiol (Oxf) ; 240(3): e14085, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230890

RESUMO

Myocardial infarction (MI) and its associated complications including ventricular arrhythmias and heart failure are responsible for a significant incidence of morbidity and mortality worldwide. The ensuing cardiomyocyte loss results in neurohormone-driven cardiac remodeling, which leads to chronic heart failure in MI survivors. Ivabradine is a heart rate modulation agent currently used in treatment of chronic heart failure with reduced ejection fraction. The canonical target of ivabradine is the hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in cardiac pacemaker cells. However, in post-MI hearts, HCN can also be expressed ectopically in non-pacemaker cardiomyocytes. There is an accumulation of intriguing evidence to suggest that ivabradine also possesses cardioprotective effects that are independent of heart rate reduction. This review aims to summarize and discuss the reported cardioprotective mechanisms of ivabradine beyond heart rate modulation in myocardial infarction through various molecular mechanisms including the prevention of reactive oxygen species-induced mitochondrial damage, improvement of autophagy system, modulation of intracellular calcium cycling, modification of ventricular electrophysiology, and regulation of matrix metalloproteinases.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Ivabradina/farmacologia , Ivabradina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Frequência Cardíaca/fisiologia , Benzazepinas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Insuficiência Cardíaca/tratamento farmacológico , Miócitos Cardíacos
4.
Basic Res Cardiol ; 118(1): 21, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227592

RESUMO

Iron overload associated cardiac dysfunction remains a significant clinical challenge whose underlying mechanism(s) have yet to be defined. We aim to evaluate the involvement of the mitochondrial Ca2+ uniporter (MCU) in cardiac dysfunction and determine its role in the occurrence of ferroptosis. Iron overload was established in control (MCUfl/fl) and conditional MCU knockout (MCUfl/fl-MCM) mice. LV function was reduced by chronic iron loading in MCUfl/fl mice, but not in MCUfl/fl-MCM mice. The level of mitochondrial iron and reactive oxygen species were increased and mitochondrial membrane potential and spare respiratory capacity (SRC) were reduced in MCUfl/fl cardiomyocytes, but not in MCUfl/fl-MCM cardiomyocytes. After iron loading, lipid oxidation levels were increased in MCUfl/fl, but not in MCUfl/fl-MCM hearts. Ferrostatin-1, a selective ferroptosis inhibitor, reduced lipid peroxidation and maintained LV function in vivo after chronic iron treatment in MCUfl/fl hearts. Isolated cardiomyocytes from MCUfl/fl mice demonstrated ferroptosis after acute iron treatment. Moreover, Ca2+ transient amplitude and cell contractility were both significantly reduced in isolated cardiomyocytes from chronically Fe treated MCUfl/fl hearts. However, ferroptosis was not induced in cardiomyocytes from MCUfl/fl-MCM hearts nor was there a reduction in Ca2+ transient amplitude or cardiomyocyte contractility. We conclude that mitochondrial iron uptake is dependent on MCU, which plays an essential role in causing mitochondrial dysfunction and ferroptosis under iron overload conditions in the heart. Cardiac-specific deficiency of MCU prevents the development of ferroptosis and iron overload-induced cardiac dysfunction.


Assuntos
Cardiopatias , Sobrecarga de Ferro , Camundongos , Animais , Miócitos Cardíacos , Sobrecarga de Ferro/complicações , Ferro , Cálcio
5.
Acta Pharm Sin B ; 13(1): 29-53, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815034

RESUMO

Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction (MI) and myocardial ischemia/reperfusion (MI/R) injury. Due to the limited regenerative ability of cardiomyocytes, understanding the mechanisms of cardiomyocyte death is necessary. Pyroptosis, one of the regulated programmed cell death pathways, has recently been shown to play important roles in MI and MI/R injury. Pyroptosis is activated by damage-associated molecular patterns (DAMPs) that are released from damaged myocardial cells and activate the formation of an apoptosis-associated speck-like protein containing a CARD (ASC) interacting with NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), resulting in caspase-1 cleavage which promotes the activation of Gasdermin D (GSDMD). This pathway is known as the canonical pathway. GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11. Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury. Although the effects of MI or MI/R injury on pyroptosis have previously been discussed, knowledge concerning the roles of GSDMD in these settings remains limited. In this review, the evidence from in vitro, in vivo, and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed. Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.

6.
Endocrinol Metab (Seoul) ; 37(4): 630-640, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927067

RESUMO

BACKGRUOUND: High cardiorespiratory fitness (CRF) protects against age-related diseases. However, the mechanisms mediating the protective effect of high intrinsic CRF against metabolic, cardiac, and brain impairments in non-obese versus obese conditions remain incompletely understood. We aimed to identify the mechanisms through which high intrinsic CRF protects against metabolic, cardiac, and brain impairments in non-obese versus obese untrained rats. METHODS: Seven-week-old male Wistar rats were divided into two groups (n=8 per group) to receive either a normal diet or a highfat diet (HFD). At weeks 12 and 28, CRF, carbohydrate and fatty acid oxidation, cardiac function, and metabolic parameters were evaluated. At week 28, behavior tests were performed. At the end of week 28, rats were euthanized to collect heart and brain samples for molecular studies. RESULTS: The obese rats exhibited higher values for aging-related parameters than the non-obese rats, indicating that they experienced obesity-induced premature aging. High baseline CRF levels were positively correlated with several favorable metabolic, cardiac, and brain parameters at follow-up. Specifically, the protective effects of high CRF against metabolic, cardiac, and brain impairments were mediated by the modulation of body weight and composition, the lipid profile, substrate oxidation, mitochondrial function, insulin signaling, autophagy, apoptosis, inflammation, oxidative stress, cardiac function, neurogenesis, blood-brain barrier, synaptic function, accumulation of Alzheimer's disease-related proteins, and cognition. Interestingly, this effect was more obvious in HFD-fed rats. CONCLUSION: The protective effect of high CRF is mediated by the modulation of several mechanisms. These effects exhibit greater efficacy under conditions of obesity-induced premature aging.


Assuntos
Senilidade Prematura , Aptidão Cardiorrespiratória , Resistência à Insulina , Senilidade Prematura/metabolismo , Senilidade Prematura/prevenção & controle , Animais , Encéfalo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Masculino , Obesidade , Ratos , Ratos Wistar
7.
Mol Med ; 28(1): 31, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272616

RESUMO

BACKGROUND: Caloric restriction and exercise are lifestyle interventions that effectively attenuate cardiometabolic impairment. However, cardioprotective effects of long-term lifestyle interventions and short-term lifestyle interventions followed by weight maintenance in prediabetes have never been compared. High cardiorespiratory fitness (CRF) has been shown to provide protection against prediabetes and cardiovascular diseases, however, the interactions between CRF, prediabetes, caloric restriction, and exercise on cardiometabolic health has never been investigated. METHODS: Seven-week-old male Wistar rats were fed with either a normal diet (ND; n = 6) or a high-fat diet (HFD; n = 30) to induce prediabetes for 12 weeks. Baseline CRF and cardiometabolic parameters were determined at this timepoint. The ND-fed rats were fed continuously with a ND for 16 more weeks. The HFD-fed rats were divided into 5 groups (n = 6/group) to receive one of the following: (1) a HFD without any intervention for 16 weeks, (2) 40% caloric restriction for 6 weeks followed by an ad libitum ND for 10 weeks, (3) 40% caloric restriction for 16 weeks, (4) a HFD plus an exercise training program for 6 weeks followed by a ND without exercise for 10 weeks, or (5) a HFD plus an exercise training program for 16 weeks. At the end of the interventions, CRF and cardiometabolic parameters were re-assessed. Then, all rats were euthanized and heart tissues were collected. RESULTS: Either short-term caloric restriction or exercise followed by weight maintenance ameliorated cardiometabolic impairment in prediabetes, as indicated by increased insulin sensitivity, improved blood lipid profile, improved mitochondrial function and oxidative phosphorylation, reduced oxidative stress and inflammation, and improved cardiac function. However, these benefits were not as effective as those of either long-term caloric restriction or exercise. Interestingly, high-level baseline CRF was correlated with favorable cardiac and metabolic profiles at follow-up in prediabetic rats, both with and without lifestyle interventions. CONCLUSIONS: Short-term lifestyle modification followed by weight maintenance improves cardiometabolic health in prediabetes. High CRF exerted protection against cardiometabolic impairment in prediabetes, both with and without lifestyle modification. These findings suggest that targeting the enhancement of CRF may contribute to the more effective treatment of prediabetes-induced cardiometabolic impairment.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Estado Pré-Diabético , Animais , Restrição Calórica , Masculino , Estado Pré-Diabético/metabolismo , Estado Pré-Diabético/terapia , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269640

RESUMO

Osteoporosis is a chronic debilitating disease caused by imbalanced bone remodeling processes that impair the structural integrity of bone. Over the last ten years, the association between fibroblast growth factor 23 (FGF23) and osteoporosis has been studied in both pre-clinical and clinical investigations. FGF23 is a bone-derived endocrine factor that regulates mineral homeostasis via the fibroblast growth factor receptors (FGFRs)/αKlotho complex. These receptors are expressed in kidney and the parathyroid gland. Preclinical studies have supported the link between the local actions of FGF23 on the bone remodeling processes. In addition, clinical evidence regarding the effects of FGF23 on bone mass and fragility fractures suggest potential diagnostic and prognostic applications of FGF23 in clinical contexts, particularly in elderly and patients with chronic kidney disease. However, inconsistent findings exist and there are areas of uncertainty requiring exploration. This review comprehensively summarizes and discusses preclinical and clinical reports on the roles of FGF23 on osteoporosis, with an emphasis on the local action, as opposed to the systemic action, of FGF23 on the bone. Current gaps in knowledge and future research directions are also suggested to encourage further rigorous research in this important field.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Osteoporose , Idoso , Osso e Ossos/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glucuronidase/genética , Humanos , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo
9.
Pharmacol Res ; 173: 105882, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34530122

RESUMO

Doxorubicin is an effective chemotherapeutic drug, but causes cardiotoxicity which limits its use. Oxidative stress, mitochondrial dysfunction, and inflammation are closely implicated in doxorubicin-induced cardiotoxicity (DIC). Necroptosis, a new form of programmed cell death, was also upregulated by doxorubicin, leading to cardiomyocyte death and cardiac dysfunction. Donepezil, an acetylcholinesterase inhibitor, exerted cardioprotection against various heart diseases. However, its cardioprotective effects in DIC are still unknown. We hypothesized that donepezil reduces reactive oxygen species (ROS) production, mitochondrial dysfunction, mitochondrial dynamics imbalance, necroptosis, and apoptosis in DIC rats. Male Wistar rats were assigned to receive either normal saline solution (n = 8) or doxorubicin (3 mg/kg, 6 doses, n = 16) via intraperitoneal injection. The doxorubicin-treated rats were further subdivided to receive either sterile drinking water (n = 8) or donepezil (5 mg/kg/day, p.o., n = 8) for 30 days. At the end of the experiment, the left ventricular (LV) function was determined. Serum and heart tissue were collected to evaluate histological and biochemical parameters. Doxorubicin-treated rats exhibited higher levels of inflammatory cytokines and ROS production. Doxorubicin also impaired mitochondrial function, mitochondrial dynamics balance, mitophagy, and autophagy, which culminated in apoptosis. Furthermore, doxorubicin increased necroptosis as evidenced by increased phosphorylation of receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed-lineage kinase domain-like. All of these mechanisms led to LV dysfunction. Interestingly, donepezil alleviated mitochondrial injury, mitophagy, autophagy, and cardiomyocyte death, leading to improved LV function in DIC. In conclusion, donepezil attenuated DIC-induced LV dysfunction by reducing mitochondrial damage, mitophagy, autophagy, apoptosis, and necroptosis.


Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Donepezila/uso terapêutico , Doxorrubicina , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/fisiopatologia , Linhagem Celular , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Miocárdio/metabolismo , Necroptose/efeitos dos fármacos , Proteínas Quinases/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
10.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299010

RESUMO

The occurrence and prevalence of heart failure remain high in the United States as well as globally. One person dies every 30 s from heart disease. Recognizing the importance of heart failure, clinicians and scientists have sought better therapeutic strategies and even cures for end-stage heart failure. This exploration has resulted in many failed clinical trials testing novel classes of pharmaceutical drugs and even gene therapy. As a result, along the way, there have been paradigm shifts toward and away from differing therapeutic approaches. The continued prevalence of death from heart failure, however, clearly demonstrates that the heart is not simply a pump and instead forces us to consider the complexity of simplicity in the pathophysiology of heart failure and reinforces the need to discover new therapeutic approaches.


Assuntos
ATPase de Ca(2+) e Mg(2+)/metabolismo , Cálcio/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Contração Miocárdica/fisiologia , Retículo Sarcoplasmático/metabolismo , Adenosina Trifosfatases/metabolismo , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Agonistas de Receptores Adrenérgicos beta 1/uso terapêutico , Antagonistas Adrenérgicos beta/farmacologia , Animais , Antioxidantes/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiotônicos/farmacologia , Dobutamina/farmacologia , Dobutamina/uso terapêutico , Insuficiência Cardíaca/fisiopatologia , Humanos
11.
J Biomed Sci ; 28(1): 25, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836761

RESUMO

Cardiovascular diseases (CVDs) are considered the predominant cause of morbidity and mortality globally. Of these, myocardial infarction (MI) is the most common cause of CVD mortality. MI is a life-threatening condition which occurs when coronary perfusion is interrupted leading to cardiomyocyte death. Subsequent to MI, consequences include adverse cardiac remodeling and cardiac dysfunction mainly contribute to the development of heart failure (HF). It has been shown that loss of functional cardiomyocytes in MI-induced HF are associated with several cell death pathways, in particular necroptosis. Although the entire mechanism underlying necroptosis in MI progression is still not widely recognized, some recent studies have reported beneficial effects of necroptosis inhibitors on cell viability and cardiac function in chronic MI models. Therefore, extensive investigation into the necroptosis signaling pathway is indicated for further study. This article comprehensively reviews the context of the underlying mechanisms of necroptosis in chronic MI-induced HF in in vitro, in vivo and clinical studies. These findings could inform ways of developing novel therapeutic strategies to improve the clinical outcomes in MI patients from this point forward.


Assuntos
Insuficiência Cardíaca/terapia , Infarto do Miocárdio/terapia , Necroptose , Animais , Doença Crônica/terapia , Humanos , Camundongos
12.
Biomed Pharmacother ; 139: 111620, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33901874

RESUMO

Cardiovascular diseases and cancers are the leading causes of deaths globally, and an increasing proportion of cancer patients is suffering from cardiac adverse effects of chemotherapeutic drugs. Trastuzumab, a monoclonal antibody that inhibits the activity of the human epidermal growth factor receptor 2 (HER2), is a potent targeted therapy for HER2-positive malignancies. Despite the impressive antineoplastic efficacy, the cardiotoxicity of trastuzumab frequently limits its use. Trastuzumab-induced cardiac contractile dysfunction has been extensively studied, yet the electrophysiological side effect of trastuzumab remains poorly characterized. Growing evidence from basic and clinical studies supports the link between trastuzumab treatment and arrhythmias. This review comprehensively summarizes relevant information from those reports, discusses their limitations, and suggests future research directions. We aim to encourage further investigations that will provide valuable insights to devise cardioprotective strategies against trastuzumab-induced cardiotoxicity.


Assuntos
Antineoplásicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Trastuzumab/efeitos adversos , Animais , Cardiotoxicidade/tratamento farmacológico , Humanos , Contração Miocárdica/efeitos dos fármacos , Receptor ErbB-2/genética
13.
Acta Physiol (Oxf) ; 231(4): e13624, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555138

RESUMO

Ventricular fibrillation (VF) and sudden cardiac arrest (SCA) remain some of the most important public health concerns worldwide. For the past 50 years, the recommendation in the Advanced Cardiac Life Support (ACLS) guidelines has been that defibrillation is the only option for shockable cardiac arrest. There is growing evidence to demonstrate that mitochondria play a vital role in the outcome of postresuscitation cardiac function. Although targeting mitochondria to improve resuscitation outcome following cardiac arrest has been proposed for many years, understanding concerning the changes in mitochondria during cardiac arrest, especially in the case of VF, is still limited. In addition, despite new research initiatives and improved medical technology, the overall survival rates of patients with SCA still remain the same. Understanding cardiac mitochondrial alterations during fatal arrhythmias may help to enable the formulation of strategies to improve the outcomes of resuscitation. The attenuation of cardiac mitochondrial dysfunction during VF through pharmacological intervention as well as ischaemic postconditioning could also be a promising target for intervention and inform a new paradigm of treatments. In this review, the existing evidence available from in vitro, ex vivo and in vivo studies regarding the roles of mitochondrial dysfunction during VF is comprehensively summarized and discussed. In addition, the effects of interventions targeting cardiac mitochondria during fatal ventricular arrhythmias are presented. Since there are no clinical reports from studies targeting mitochondria to improve resuscitation outcome available, this review will provide important information to encourage further investigations in a clinical setting.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca , Coração , Humanos , Mitocôndrias Cardíacas , Fibrilação Ventricular/terapia
14.
Circ Arrhythm Electrophysiol ; 14(2): e009291, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33417472

RESUMO

BACKGROUND: Arrhythmias and heart failure are common cardiac complications leading to substantial morbidity and mortality in patients with hemochromatosis, yet mechanistic insights remain incomplete. We investigated the effects of iron (Fe) on electrophysiological properties and intracellular Ca2+ (Ca2+i) handling in mouse left ventricular cardiomyocytes. METHODS: Cardiomyocytes were isolated from the left ventricle of mouse hearts and were superfused with Fe3+/8-hydroxyquinoline complex (5-100 µM). Membrane potential and ionic currents including TRPC (transient receptor potential canonical) were recorded using the patch-clamp technique. Ca2+i was evaluated by using Fluo-4. Cell contraction was measured with a video-based edge detection system. The role of TRPCs in the genesis of arrhythmias was also investigated by using a mathematical model of a mouse ventricular myocyte with the incorporation of the TRPC component. RESULTS: We observed prolongation of the action potential duration and induction of early and delayed afterdepolarizations in myocytes superfused with 15 µmol/L Fe3+/8-hydroxyquinoline complex. Iron treatment decreased the peak amplitude of the L-type Ca2+ current and total K+ current, altered Ca2+i dynamics, and decreased cell contractility. During the final phase of Fe treatment, sustained Ca2+i waves and repolarization failure occurred and ventricular cells became unexcitable. Gadolinium abolished Ca2+i waves and restored the resting membrane potential to the normal range. The involvement of TRPC activation was confirmed by TRPC channel current recordings in the absence or presence of functional TRPC channel antibodies. Computer modeling captured the same action potential and Ca2+i dynamics and provided additional mechanistic insights. CONCLUSIONS: We conclude that iron overload induces cardiac dysfunction that is associated with TRPC channel activation and alterations in membrane potential and Ca2+i dynamics.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Sobrecarga de Ferro/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Sobrecarga de Ferro/patologia , Sobrecarga de Ferro/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica/fisiologia , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp
15.
J Cell Physiol ; 236(7): 5108-5120, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33319934

RESUMO

This study aimed to investigate the mechanistic roles of LCN-2 and LCN-2 receptors (LCN-2R) as iron transporters in cardiomyocytes under iron overload condition. H9c2 cardiomyocytes were treated with either LCN-2 small interfering RNA (siRNA) or LCN-2R siRNA or L-type or T-type calcium channel (LTCC or TTCC) blockers, or iron chelator deferiprone (DFP). After the treatments, the cells were exposed to Fe3+ or Fe2+ , after that biological parameters were determined. Silencing of lipocalin-2 or its receptor improved cardiomyocyte viability via decreasing iron uptake, mitochondrial fission, mitophagy and cleaved caspase-3 only in the Fe3+ overload condition. In contrast, treatments with LTCC blocker and TTCC blocker showed beneficial effects on those parameters only in conditions of Fe2+ overload. Treatment with DFP has been shown beneficial effects both in Fe2+ and Fe3+ overload condition. All of these findings suggested that LTCC and TTCC play crucial roles in the Fe2+ uptake, whereas LCN-2 and LCN-2R were essential for Fe3+ uptake into the cardiomyocytes under iron overload conditions.


Assuntos
Apoptose/fisiologia , Sobrecarga de Ferro/patologia , Lipocalina-2/genética , Mitocôndrias/patologia , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Linhagem Celular , Sobrevivência Celular/genética , Deferiprona/farmacologia , Ferro/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos
16.
J Physiol ; 598(19): 4181-4195, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710575

RESUMO

The coronavirus disease 2019 (COVID-19) is the third major coronavirus outbreak of this century. Its aetiological agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires angiotensin converting enzyme 2 (ACE2) for cellular entry. The commonly used angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) could affect SARS-CoV-2 infectivity and may alter COVID-19 disease progression by altering ACE2 expression. Current evidence of ACEI/ARB-ACE2 interaction as well as the effects of ACEIs/ARBs on viral-associated acute lung injury is summarized and discussed in this review. This review assesses the evidence gathered so far and highlights the research that needs to be done to help inform clinical decision making.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , COVID-19/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Humanos , Tratamento Farmacológico da COVID-19
17.
Arch Biochem Biophys ; 680: 108241, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31891670

RESUMO

Excessive iron accumulation in the heart can lead to iron overload cardiomyopathy (IOC), the leading cause of death in hemochromatosis patients. Current understanding regarding the mechanism by which iron overload causes a deterioration in cardiac performance, mitochondrial dysfunction, and impaired mitochondrial dynamics remains limited. Ferroptosis, a newly identified form of regulated cell death, has recently been revealed influencing the pathophysiological process of IOC. Nevertheless, the direct effect of cardiac iron overload on ferroptotic cell death is incompletely characterized. This review article comprehensively summarizes and discusses the effects of iron overload on cardiac mitochondrial function, cardiac mitochondrial dynamics, ferroptosis of cardiomyocytes, and left ventricular function in in vitro and in vivo reports. This review also provides relevant consistent and controversial information which can facilitate further mechanistic investigation into iron-induced cardiac dysfunction in the clinical setting in the near future.


Assuntos
Ferroptose , Sobrecarga de Ferro/metabolismo , Dinâmica Mitocondrial , Miócitos Cardíacos/metabolismo , Animais , Morte Celular , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo
18.
Pharmacol Res ; 151: 104542, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31730804

RESUMO

The cancer burden on health and socioeconomics remains exceedingly high, with more than ten million new cases reported worldwide in 2018. The financial cost of managing cancer patients has great economic impact on both an individual and societal levels. Currently, many chemotherapeutic agents are available to treat various malignancies. One of these agents is doxorubicin, which was isolated from Streptomyces peucetius in the 1960s. Doxorubicin is frequently administered in combination with other agents as a mainstay chemotherapeutic regimen in many settings, since there is well-documented evidence that it is effective in eliminating malignant cells. Doxorubicin exerts its anti-tumor properties through DNA intercalation and topoisomerase inhibition. It also contains a quinone moiety which is susceptible to redox reactions with certain intracellular molecules, thereby leading to the production of reactive oxygen species. The oxidative stress following doxorubicin exposure is responsible for its well-documented cardiotoxicity, impairing cardiac contractility, ultimately resulting in congestive heart failure. Despite the cumulative evidence noting its adverse effects on the heart, limited information is available regarding the mechanistic association between doxorubicin and cardiac arrhythmias. There is compelling evidence to suggest that doxorubicin also causes proarrhythmic effects. Several case reports and studies in cancer patients have attributed many arrhythmic events to doxorubicin, some of which are life-threatening such as complete heart block and ventricular fibrillation. In this review, reports regarding the potential arrhythmic complications associated with doxorubicin from previous studies investigating the effects of doxorubicin on cardiac electrophysiological properties are comprehensively summarized and discussed. Consistencies and controversial findings from in vitro, in vivo, ex vivo, and clinical studies are presented and mechanistic insights regarding the effects of doxorubicin are also discussed.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Arritmias Cardíacas/induzido quimicamente , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Arritmias Cardíacas/fisiopatologia , Cardiotoxicidade/tratamento farmacológico , Coração/fisiopatologia , Humanos
19.
Toxicology ; 427: 152289, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31542421

RESUMO

The morbidity and mortality in thalassemia patients are predominantly caused by iron overload cardiomyopathy (IOC). Iron-induced cardiac intracellular Ca2+ ([Ca2+]i) dysregulation is among the core pathophysiological processes in IOC-related heart failure. Although cardioprotective roles of deferiprone (DFP) and N-acetylcysteine (NAC) have been reported, their effect on cardiac [Ca2+]i transients and Ca2+-regulatory protein expression in thalassemic mice is unknown. In the present study, iron overload condition was induced in wild-type (WT) and heterozygous ß-thalassemic (HT) mice by a high-iron diet. The iron-overloaded mice subsequently received a vehicle, DFP, NAC, or DFP plus NAC co-therapy. In both WT and HT iron-overloaded mice, DFP and NAC had similar efficacy in decreasing plasma non-transferrin-bound iron, decreasing cardiac iron concentration (CIC) and relieving systolic dysfunction. DFP plus NAC co-therapy, however, was better than the monotherapy in reducing CIC and restoring cardiac [Ca2+]i transient amplitude and rising rate. All regimens produced no change in cardiac Ca2+-regulatory protein expression. We provided the first evidence regarding the synergistic effect of combined iron chelator-antioxidant therapy on cardiac [Ca2+]i homeostasis in iron-overloaded thalassemic mice, with consistent improvement of cardiac contractility.


Assuntos
Acetilcisteína/farmacologia , Cálcio/metabolismo , Deferiprona/farmacologia , Quelantes de Ferro/farmacologia , Sobrecarga de Ferro/metabolismo , Miocárdio/metabolismo , Talassemia/metabolismo , Animais , Coração/efeitos dos fármacos , Homeostase , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
20.
Front Physiol ; 9: 1615, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498456

RESUMO

Iron, the most abundant transition metal element in the human body, plays an essential role in many physiological processes. However, without a physiologically active excretory pathway, iron is subject to strict homeostatic processes acting upon its absorption, storage, mobilization, and utilization. These intricate controls are perturbed in primary and secondary hemochromatoses, leading to a deposition of excess iron in multiple vital organs including the heart. Iron overload cardiomyopathy is the leading cause of mortality in patients with iron overload conditions. Apart from mechanical deterioration of the siderotic myocardium, arrhythmias reportedly contribute to a substantial portion of cardiac death associated with iron overload. Despite this significant impact, the cellular mechanisms of electrical disturbances in an iron-overloaded heart are still incompletely characterized. This review article focuses on cellular electrophysiological studies that directly investigate the effects of iron overload on the function of cardiac ion channels, including trans-sarcolemmal and sarcoplasmic reticulum Ca2+ fluxes, as well as cardiac action potential morphology. Our ultimate aim is to provide a comprehensive summary of the currently available information that will encourage and facilitate further mechanistic elucidation of iron-induced pathoelectrophysiological changes in the heart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA