Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Gut ; 72(10): 1887-1903, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399271

RESUMO

OBJECTIVE: Colorectal tumours are often densely infiltrated by immune cells that have a role in surveillance and modulation of tumour progression but are burdened by immunosuppressive signals, which might vary from primary to metastatic stages. Here, we deployed a multidimensional approach to unravel the T-cell functional landscape in primary colorectal cancers (CRC) and liver metastases, and genome editing tools to develop CRC-specific engineered T cells. DESIGN: We paired high-dimensional flow cytometry, RNA sequencing and immunohistochemistry to describe the functional phenotype of T cells from healthy and neoplastic tissue of patients with primary and metastatic CRC and we applied lentiviral vectors (LV) and CRISPR/Cas9 genome editing technologies to develop CRC-specific cellular products. RESULTS: We found that T cells are mainly localised at the front edge and that tumor-infiltrating T cells co-express multiple inhibitory receptors, which largely differ from primary to metastatic sites. Our data highlighted CD39 as the major driver of exhaustion in both primary and metastatic colorectal tumours. We thus simultaneously redirected T-cell specificity employing a novel T-cell receptor targeting HER-2 and disrupted the endogenous TCR genes (TCR editing (TCRED)) and the CD39 encoding gene (ENTPD1), thus generating TCREDENTPD1KOHER-2-redirected lymphocytes. We showed that the absence of CD39 confers to HER-2-specific T cells a functional advantage in eliminating HER-2+ patient-derived organoids in vitro and in vivo. CONCLUSION: HER-2-specific CD39 disrupted engineered T cells are promising advanced medicinal products for primary and metastatic CRC.


Assuntos
Antígenos CD , Apirase , Neoplasias Colorretais , Neoplasias Hepáticas , Linfócitos T , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Receptores de Antígenos de Linfócitos T , Apirase/genética , Antígenos CD/genética , Engenharia Celular
2.
Sci Transl Med ; 14(628): eabg3072, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044789

RESUMO

Immunotherapy with chimeric antigen receptor (CAR)­engineered T cells showed exceptional successes in patients with refractory B cell malignancies. However, first-in-human studies in solid tumors revealed unique hurdles contributing to poor demonstration of efficacy. Understanding the determinants of tumor recognition by CAR T cells should translate into the design of strategies that can overcome resistance. Here, we show that multiple carcinomas express extracellular N-glycans, whose abundance negatively correlates with CAR T cell killing. By knocking out mannoside acetyl-glucosaminyltransferase 5 (MGAT5) in pancreatic adenocarcinoma (PAC), we showed that N-glycans protect tumors from CAR T cell killing by interfering with proper immunological synapse formation and reducing transcriptional activation, cytokine production, and cytotoxicity. To overcome this barrier, we exploited the high metabolic demand of tumors to safely inhibit N-glycans synthesis with the glucose/mannose analog 2-deoxy-d-glucose (2DG). Treatment with 2DG disrupts the N-glycan cover on tumor cells and results in enhanced CAR T cell activity in different xenograft mouse models of PAC. Moreover, 2DG treatment interferes with the PD-1­PD-L1 axis and results in a reduced exhaustion profile of tumor-infiltrating CAR T cells in vivo. The combined 2DG and CAR T cell therapy was successful against multiple carcinomas besides PAC, including those arising from the lung, ovary, and bladder, and with different clinically relevant CAR specificities, such as CD44v6 and CEA. Overall, our results indicate that tumor N-glycosylation regulates the quality and magnitude of CAR T cell responses, paving the way for the rational design of improved therapies against solid malignancies.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Adenocarcinoma/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Neoplasias Pancreáticas/metabolismo , Polissacarídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Hum Gene Ther ; 32(13-14): 744-760, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33554732

RESUMO

Effectiveness of adoptively transferred chimeric antigen receptor (CAR) T cells strongly depends on the quality of CAR-mediated interaction of the effector cells with the target antigen on tumor cells. A major role in this interaction is played by the affinity of the single-chain variable fragment (scFv) for the antigen, and by the CAR design. In particular, the spacer domain may impact on the CAR T cell function by affecting the length and flexibility of the resulting CAR. This study addresses the need to improve the manufacturing process and the antitumor activity of CD44v6-specific CAR T cells by defining the optimal structure of a spacer region derived from the extracellular domain of the human low-affinity nerve growth factor receptor (LNGFR). We tailored the LNGFR spacer to modulate CAR length to efficiently recognize distal or proximal epitopes and to allow selection of transduced CAR T cells by the use of clinical-grade validated manufacturing systems. The different LNGFR spacers investigated in this study are responsible for the generation of CAR T cells with a different memory phenotype, which is mainly related to the level of CAR expression and the extent of the associated tonic signaling. In particular, the CD44v6-NWN2.CAR T cells are enriched in central memory cells and show improved in vitro functions in terms of killing capability, and in vivo antitumor activity against hematological and solid tumors. Clinical Trial Registration numbers: clinicaltrial.gov NCT04097301; ClinicalTrials.gov, NCT00423124.


Assuntos
Receptores de Antígenos Quiméricos , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva , Receptor de Fator de Crescimento Neural , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Fator de Crescimento Neural , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Gen Virol ; 98(6): 1372-1376, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28613147

RESUMO

Merkel cell polyomavirus (MCPyV) has been identified in samples of Merkel cell carcinoma (MCC), an aggressive skin cancer. Seroepidemiologic studies indicated a high frequency of MCPyV infection in humans, suggesting respiratory and faecal-oral routes, or transmission by skin contact. Since MCC is more frequent in immunocompromised patients, a reactivation of MCPyV latently infecting target cells has been proposed. However, neither definite ways of transmission nor specific target organs have been identified with certainty. Ten autopsies with an extensive organ sampling for a total of 121 specimens (tissue and blood samples) were collected. All tissue specimens were fixed in formalin and embedded in paraffin. Real-time PCR was performed to quantify the copy number of the large T antigen (LT) gene and the capsid VP1 gene of MCPyV. MCPyV LT and/or VP genes were detected in all of the collected specimens. A high prevalence of MCPyV was found in the blood (six cases) and lung (five cases); the brain was positive in three cases. The highest viral copy number was detected in blood from two autopsies (21 610 570.09 copies per 105 cells and 380 413.25 copies per 105 cells), whereas the viral copy number in the other organs was low. Our data confirm the high frequency of MCPyV infection in the general population, which seems to indicate that the respiratory tract is a possible route for viral transmission and viral persistence in the brain. The frequent detection of MCPyV DNA in blood suggests that circulating leukocytes could be one of the reservoirs of MCPyV, whereas the high viral copy number also seems to indicate the possibility of viral reactivation in immunocompetent adults.


Assuntos
Autopsia , DNA Viral/isolamento & purificação , Poliomavírus das Células de Merkel/isolamento & purificação , Infecções por Polyomavirus/virologia , Infecções Tumorais por Vírus/virologia , Humanos , Poliomavírus das Células de Merkel/genética , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA