Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34697246

RESUMO

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene. However, with climate change and more frequent and severe fires, shifts away from black spruce dominance to broadleaf or pine species are emerging, with implications for ecosystem functions including carbon sequestration, water and energy fluxes, and wildlife habitat. Here, we predict that such reductions in black spruce after fire may already be widespread given current trends in climate and fire. To test this, we synthesize data from 1,538 field sites across boreal North America to evaluate compositional changes in tree species following 58 recent fires (1989 to 2014). While black spruce was resilient following most fires (62%), loss of resilience was common, and spruce regeneration failed completely in 18% of 1,140 black spruce sites. In contrast, postfire regeneration never failed in forests dominated by jack pine, which also possesses an aerial seed bank, or broad-leaved trees. More complete combustion of the soil organic layer, which often occurs in better-drained landscape positions and in dryer duff, promoted compositional changes throughout boreal North America. Forests in western North America, however, were more vulnerable to change due to greater long-term climate moisture deficits. While we find considerable remaining resilience in black spruce forests, predicted increases in climate moisture deficits and fire activity will erode this resilience, pushing the system toward a tipping point that has not been crossed in several thousand years.


Assuntos
Mudança Climática , Picea , Taiga , Incêndios Florestais , América do Norte
2.
Environ Entomol ; 44(5): 1316-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26314011

RESUMO

Dead wood decomposition begins immediately after tree death and involves a large array of invertebrates. Ecological successions are still poorly known for saproxylic organisms, particularly in boreal forests. We investigated the use of dead wood as nesting sites for ants along a 60-yr postfire chronosequence in northeastern coniferous forests. We sampled a total of 1,625 pieces of dead wood, in which 263 ant nests were found. Overall, ant abundance increased during the first 30 yr after wildfire, and then declined. Leptothorax cf. canadensis Provancher, the most abundant species in our study, was absent during the first 2 yr postfire, but increased steadily until 30 yr after fire, whereas Myrmica alaskensis Wheeler, second in abundance, was found at all stages of succession in the chronosequence. Six other species were less frequently found, among which Camponotus herculeanus (Linné), Formica neorufibarbis Emery, and Formica aserva Forel were locally abundant, but more scarcely distributed. Dead wood lying on the ground and showing numerous woodborer holes had a higher probability of being colonized by ants. The C:N ratio was lower for dead wood colonized by ants than for noncolonized dead wood, showing that the continuous occupation of dead wood by ants influences the carbon and nitrogen dynamics of dead wood after wildfire in northern boreal forests.


Assuntos
Formigas/fisiologia , Incêndios , Animais , Formigas/classificação , Biodiversidade , Carbono/análise , Nitrogênio/análise , Dinâmica Populacional , Quebeque , Taiga , Árvores , Madeira/química
3.
Environ Entomol ; 42(1): 17-28, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23339782

RESUMO

We identified the factors that affect the early colonization of burned stands by adults and the progeny surviving in fire-killed black spruce trees for three cerambycid beetles: Acmaeops proteus proteus (Kirby), Acmaeops pratensis (Laicharting), and Monochamus scutellatus scutellatus (Say) (Coleoptera: Cerambycidae) in the northern Canadian boreal forest. Furthermore, we measured if progeny emerging from burned trees was related to patterns of adults captured in traps the same year as the fire. Fire severity at the stand and landscape scales were the most important predictors for colonizing adults. Except for A. pratensis, thick-barked and lightly burned trees positively influenced the occurrence of surviving progeny at the tree level. Last-instar larvae of A. pratensis emerged from burned trees more often in severely burned landscapes. This may result from biotic interactions with intraguild species or predators. With the exception of A. pratensis, variables affecting the postfire abundance and occurrence pattern of adults were strikingly different from progeny emerging after fire. Progeny emerging from burned trees was almost exclusively related to tree- or stand level characteristics, whereas colonizing adults were correlated with variables measured at various spatial scales, and most often at the landscape scale. Moreover, A. proteus proteus and M. scutellatus scutellatus adults were more common in severely burned landscapes, although their progeny emerged more often in lightly or moderately burned trees. Host selection behavior within stands (e.g., host acceptance) by colonizing adults or host suitability for the larvae might have caused this discrepancy.


Assuntos
Besouros , Ecossistema , Incêndios , Picea/parasitologia , Animais , Picea/anatomia & histologia , Densidade Demográfica , Quebeque , Árvores/anatomia & histologia , Árvores/parasitologia
4.
Environ Entomol ; 36(1): 128-41, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17349126

RESUMO

Saproxylic succession in fire-killed black spruce [Picea mariana (Mill.) B.S.P.] coarse woody debris (CWD) in northern Quebec is estimated in this study using a 29-yr postfire chronosequence. Sampling was performed using both trunk-window traps and rearing from snag and log sections. A total of 37,312 arthropods (>220 taxa) were collected from both sampling methods. Two distinct colonization waves were identified. The onset of initial colonization occurs the year of the fire, whereas the second colonization phase begins only once debris falls to the ground. The initial colonization step is influenced by fire-associated species including subcortical predators, xylophages, and ascomycetes feeders. Abundance of most early colonizer species decline with time since fire with the disappearance of subcortical habitat. No noticeable species turnover occurred in snags thereafter. Lack of succession in snags is related to very low decomposition rates for postfire CWD because this substrate is unsuitable for species associated with highly decayed wood. Snag falling triggers fungal growth and concomitant saproxylic succession toward micro- and saprophagous species and increases accessibility for soil-dwelling organisms. Because the position of woody debris greatly influences overall physical properties of dead wood, the fall of burned CWD plays a major role in saproxylic community shift after fire.


Assuntos
Besouros/fisiologia , Incêndios , Picea , Animais , Artrópodes/classificação , Artrópodes/fisiologia , Biodiversidade , Besouros/classificação , Dinâmica Populacional , Quebeque , Árvores , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA