Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38077085

RESUMO

Emerging spatial omics technologies continue to advance the molecular mapping of tissue architecture and the investigation of gene regulation and cellular crosstalk, which in turn provide new mechanistic insights into a wide range of biological processes and diseases. Such technologies provide an increasingly large amount of information content at multiple spatial scales. However, representing and harmonizing diverse spatial datasets efficiently, including combining multiple modalities or spatial scales in a scalable and flexible manner, remains a substantial challenge. Here, we present Giotto Suite, a suite of open-source software packages that underlies a fully modular and integrated spatial data analysis toolbox. At its core, Giotto Suite is centered around an innovative and technology-agnostic data framework embedded in the R software environment, which allows the representation and integration of virtually any type of spatial omics data at any spatial resolution. In addition, Giotto Suite provides both scalable and extensible end-to-end solutions for data analysis, integration, and visualization. Giotto Suite integrates molecular, morphology, spatial, and annotated feature information to create a responsive and flexible workflow for multi-scale, multi-omic data analyses, as demonstrated here by applications to several state-of-the-art spatial technologies. Furthermore, Giotto Suite builds upon interoperable interfaces and data structures that bridge the established fields of genomics and spatial data science, thereby enabling independent developers to create custom-engineered pipelines. As such, Giotto Suite creates an immersive ecosystem for spatial multi-omic data analysis.

2.
Breast Cancer Res ; 25(1): 92, 2023 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-37544983

RESUMO

BACKGROUND: Breast density is strongly associated with breast cancer risk. Fully automated quantitative density assessment methods have recently been developed that could facilitate large-scale studies, although data on associations with long-term breast cancer risk are limited. We examined LIBRA assessments and breast cancer risk and compared results to prior assessments using Cumulus, an established computer-assisted method requiring manual thresholding. METHODS: We conducted a cohort study among 21,150 non-Hispanic white female participants of the Research Program in Genes, Environment and Health of Kaiser Permanente Northern California who were 40-74 years at enrollment, followed for up to 10 years, and had archived processed screening mammograms acquired on Hologic or General Electric full-field digital mammography (FFDM) machines and prior Cumulus density assessments available for analysis. Dense area (DA), non-dense area (NDA), and percent density (PD) were assessed using LIBRA software. Cox regression was used to estimate hazard ratios (HRs) for breast cancer associated with DA, NDA and PD modeled continuously in standard deviation (SD) increments, adjusting for age, mammogram year, body mass index, parity, first-degree family history of breast cancer, and menopausal hormone use. We also examined differences by machine type and breast view. RESULTS: The adjusted HRs for breast cancer associated with each SD increment of DA, NDA and PD were 1.36 (95% confidence interval, 1.18-1.57), 0.85 (0.77-0.93) and 1.44 (1.26-1.66) for LIBRA and 1.44 (1.33-1.55), 0.81 (0.74-0.89) and 1.54 (1.34-1.77) for Cumulus, respectively. LIBRA results were generally similar by machine type and breast view, although associations were strongest for Hologic machines and mediolateral oblique views. Results were also similar during the first 2 years, 2-5 years and 5-10 years after the baseline mammogram. CONCLUSION: Associations with breast cancer risk were generally similar for LIBRA and Cumulus density measures and were sustained for up to 10 years. These findings support the suitability of fully automated LIBRA assessments on processed FFDM images for large-scale research on breast density and cancer risk.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/epidemiologia , Densidade da Mama , Estudos de Coortes , Brancos , Mama/diagnóstico por imagem , Mamografia/métodos , Fatores de Risco , Estudos de Casos e Controles
3.
Nat Commun ; 14(1): 377, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690614

RESUMO

Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.


Assuntos
Neoplasias da Mama , Transcriptoma , Feminino , Humanos , Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Mama/metabolismo , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único
4.
Genome Res ; 31(10): 1706-1718, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599004

RESUMO

Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and architecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic understanding of many biological processes in both health and disease that cannot be obtained by using traditional technologies. The development of computational methods plays important roles in extracting biological signals from raw data. Various approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sensitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell-cell communications as quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different technological platforms.


Assuntos
Análise de Dados , Transcriptoma , Algoritmos , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA