Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Virol Plus ; 2(3): 100091, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35761832

RESUMO

Objectives: The World Health Organization (WHO) had designated the SARS-CoV-2 lineage B.1.1.529 as the new Variant of Concern Omicron (VOC-Omicron) on 26th November 20211. Real-time reverse transcription polymerase chain reaction (RT-PCR), single nucleotide polymorphisms (SNP) and whole genome sequencing (WGS) tests were widely employed to detect SARS-CoV-2 and its variant. Yet, the SARS-CoV-2 Omicron detection performance of commercial real-time RT-PCR platforms and SARS-CoV-2 spike SNP assays remain to be elucidated. Methods: In the first part of this study, we evaluated the VOC-Omicron detection performance of three commercial RT-PCR sample-to-answer platforms i.e. Roche cobas® 6800/8800, Roche cobas® Liat®, and Cepheid GeneXpert® systems. The detection performances were compared to one commercial conventional real-time RT-PCR assay (TIB MOLBIOL LightMix Modular SARS and Wuhan CoV E-gene) and one in-house real-time RT-PCR assay targeting RNA-dependent RNA polymerase (RdRP) gene of SARS-CoV-2 in the WHO COVID-19 Reference Laboratory at Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, The Government of the Hong Kong Special Administrative Region. In the second part of this study, we evaluated the SNP detection performance of four TIB MOLBIOL melting curve-based assays (1. Spike S371L/S373P, 2. Spike E484A, 3. Spike E484K and 4. Spike N501Y) in clinical samples obtained from hospitalized COVID-19 patients in Hong Kong. The SNP results were compared to whole genome sequences generated by Illumina platform. Results: The VOC-Omicron detection limits of three commercial sample-to-answer assays were tested to be ≤ 2.35 Log10 dC/ml. The detection performances of the sample-to-answer platforms were comparable to the two tested conventional real-time RT-PCR assays. The test sensitivities of TIB MOLBIOL VirSNiP SARS-CoV-2 Spike S371L/S373P assay and the Spike E484A assays were 100% and 96.6% respectively and the test specificities of both assays were 100%. An aberrant melting peak at Tm 42-44°C was observed when the specimens with Omicron variant were tested with the TIB MOLBIOL VirSNiP SARS-CoV-2 Spike E484K assay. Notably, the TIB MOLBIOL VirSNiP SARS-CoV-2 Spike N501Y assay failed to detect the spike N501Y mutation of Omicron variant in the tested specimens. Conclusions: The SARS-CoV-2 detection sensitivity of three commercial platforms, Roche cobas® 6800/8800, Roche cobas® Liat®, and Cepheid GeneXpert® systems were shown not to be impacted by the large number of mutations of VOC-Omicron. Also, the signature mutations i.e. Spike S371L/Spike S373P and Spike E484A in VOC-Omicron were correctly identified by the TIB MOLBIOL VirSNiP SARS-CoV-2 Spike S371L/S373P and VirSNiP SARS-CoV-2 Spike E484A assays. Unexpected findings including a shifted melting peak or absence of amplification curve/melting peak were observed when specimens with Omicron variant were tested with the TIB MOLBIOL VirSNiP SARS-CoV-2 Spike E484K assay and Spike N501Y assay, suggesting a potential alert for Omicron variant, prior confirmation by whole genome sequencing.

2.
Sci Adv ; 8(15): eabm3471, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35427166

RESUMO

Vascular smooth muscle cells (VSMCs) play a central role in the progression of atherosclerosis, where they switch from a contractile to a synthetic phenotype. Because of their role as risk factors for atherosclerosis, we sought here to systematically study the impact of matrix stiffness and (hemodynamic) pressure on VSMCs. Thereby, we find that pressure and stiffness individually affect the VSMC phenotype. However, only the combination of hypertensive pressure and matrix compliance, and as such mechanical stimuli that are prevalent during atherosclerosis, leads to a full phenotypic switch including the formation of matrix-degrading podosomes. We further analyze the molecular mechanism in stiffness and pressure sensing and identify a regulation through different but overlapping pathways culminating in the regulation of the actin cytoskeleton through cofilin. Together, our data show how different pathological mechanical signals combined but through distinct pathways accelerate a phenotypic switch that will ultimately contribute to atherosclerotic disease progression.


Assuntos
Aterosclerose , Músculo Liso Vascular , Aterosclerose/patologia , Proliferação de Células , Células Cultivadas , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Fenótipo
3.
J Muscle Res Cell Motil ; 40(2): 197-209, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31214894

RESUMO

The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell-matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.


Assuntos
Matriz Extracelular , Cardiopatias , Mecanotransdução Celular , Músculo Liso Vascular , Miócitos Cardíacos , Miócitos de Músculo Liso , Podossomos , Animais , Adesão Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fibrose , Cardiopatias/metabolismo , Cardiopatias/patologia , Humanos , Integrinas/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Podossomos/metabolismo , Podossomos/patologia
4.
Mol Biol Cell ; 30(5): 622-635, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601698

RESUMO

During podosome formation, distinct phosphatidylinositol 3,4,5-trisphosphate lipid (PI(3,4,5)P3) production and F-actin polymerization take place at integrin-mediated adhesions. Membrane-associated actin regulation factors, such as myosin-1, serve as key molecules to link phosphatidylinositol signals to podosome assembly. Here, we report that long-tailed myosin-1e (Myo1e) is enriched at the ventral layer of the podosome core in a PI(3,4,5)P3-dependent manner. The combination of TH1 and TH2 (TH12) of Myo1e tail domains contains the essential motif for PI(3,4,5)P3-dependent membrane association and ventral localization at the podosome. TH12 KR2A (K772A and R782A) becomes dissociated from the plasma membrane. While F-actin polymerizations are initialized from the ventral layer of the podosome, TH12 precedes the recruitment of N-WASP and Arp2/3 in the initial phase of podosome formation. Overexpression of TH12, not TH12 KR2A, impedes PI(3,4,5)P3 signaling, restrains F-actin polymerization, and inhibits podosome formation. TH12 also suppresses gelatin degradation and migration speed of invadopodia-forming A375 melanoma cells. Thus, TH12 domain of Myo1e serves as a regulatory component to connect phosphatidylinositol signaling to F-actin polymerization at the podosome.


Assuntos
Actinas/metabolismo , Miosinas/química , Miosinas/metabolismo , Fosfatidilinositóis/metabolismo , Podossomos/metabolismo , Polimerização , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Gelatina/metabolismo , Humanos , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios Proteicos , Células RAW 264.7 , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA