Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Pharmacol Exp Ther ; 378(3): 315-321, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145064

RESUMO

Inhibition of acetylcholinesterase (AChE) by certain organophosphates (OPs) can be life-threatening and requires reactivating antidote accessibility to the peripheral and central nervous systems to reverse symptoms and enhance survival parameters. In considering dosing requirements for oxime antidotes in OP exposures that inactivate AChE, clearance of proton ionizable, zwitterionic antidotes is rapid and proceeds with largely the parent antidotal compound being cleared by renal transporters. Such transporters may also control disposition between target tissues and plasma as well as overall elimination from the body. An ideal small-molecule antidote should access and be retained in primary target tissues-central nervous system (brain), skeletal muscle, and peripheral autonomic sites-for sufficient periods to reactivate AChE and prevent acute toxicity. We show here that we can markedly prolong the antidotal activity of zwitterionic antidotes by inhibiting P-glycoprotein (P-gp) transporters in the brain capillary and renal systems. We employ the P-gp inhibitor tariquidar as a reference compound and show that tissue and plasma levels of RS194B, a hydroxyl-imino acetamido alkylamine reactivator, are elevated and that plasma clearances are reduced. To examine the mechanism, identify the transporter, and establish the actions of a transport inhibitor, we compare the pharmacokinetic parameters in a P-glycoprotein knockout mouse strain and see dramatic enhancements of short-term plasma and tissue levels. Hence, repurposed transport inhibitors that are candidate or Food and Drug Administration-approved drugs, should enhance target tissue concentrations of the zwitterionic antidote through inhibition of both renal elimination and brain capillary extrusion. SIGNIFICANCE STATEMENT: We examine renal and brain capillary transporter inhibition as means for lowering dose and frequency of dosing of a blood-brain barrier permanent reactivating antidote, RS194B, an ionizable zwitterion. Through a small molecule, tariquidar, and gene knockout mice, CNS antidote concentrations are enhanced, and total body clearances are concomitantly diminished. RS194B with repurposed transport inhibitors should enhance reactivation of central and peripheral OP-inhibited acetylcholinesterase. Activities at both disposition sites are a desired features for replacing the antidote, pralidoxime, for acute OP exposure.


Assuntos
Acetilcolinesterase , Cinética , Organofosfatos , Compostos de Pralidoxima
2.
Toxicol Appl Pharmacol ; 372: 40-46, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978400

RESUMO

Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.


Assuntos
Antídotos/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Antídotos/química , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Domínio Catalítico , Reativadores da Colinesterase/química , Feminino , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Mutação , Oximas/química , Conformação Proteica , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
3.
J Pharmacol Exp Ther ; 367(2): 363-372, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30190337

RESUMO

In the development of antidotal therapy for treatment of organophosphate exposure from pesticides used in agriculture and nerve agents insidiously employed in terrorism, the alkylpyridinium aldoximes have received primary attention since their early development by I. B. Wilson in the 1950s. Yet these agents, by virtue of their quaternary structure, are limited in rates of crossing the blood-brain barrier, and they require administration parenterally to achieve full distribution in the body. Oximes lacking cationic charges or presenting a tertiary amine have been considered as alternatives. Herein, we examine the pharmacokinetic properties of a lead ionizable, zwitterionic hydroxyiminoacetamido alkylamine in mice to develop a framework for studying these agents in vivo and generate sufficient data for their consideration as appropriate antidotes for humans. Consequently, in vitro and in vivo efficacies of immediate structural congeners were explored as leads or backups for animal studies. We compared oral and parenteral dosing, and we developed an intramuscular loading and oral maintenance dosing scheme in mice. Steady-state plasma and brain levels of the antidote were achieved with sequential administrations out to 10 hours, with brain levels exceeding plasma levels shortly after administration. Moreover, the zwitterionic oxime showed substantial protection after gavage, whereas the classic methylpyridinium aldoxime (2-pyridinealdoxime methiodide) was without evident protection. Although further studies in other animal species are necessary, ionizing zwitterionic aldoximes present viable alternatives to existing antidotes for prophylaxis and treatment of large numbers of individuals in terrorist-led events with nerve agent organophosphates, such as sarin, and in organophosphate pesticide exposure.


Assuntos
Antídotos/farmacologia , Antídotos/farmacocinética , Intoxicação por Organofosfatos/tratamento farmacológico , Organofosfatos/efeitos adversos , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Feminino , Chumbo/efeitos adversos , Masculino , Camundongos , Agentes Neurotóxicos/efeitos adversos , Compostos Organofosforados/efeitos adversos , Oximas/farmacocinética , Oximas/farmacologia , Praguicidas/efeitos adversos , Distribuição Tecidual
4.
Chem Res Toxicol ; 28(5): 1036-44, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25835984

RESUMO

Exposure to the nerve agent soman is difficult to treat due to the rapid dealkylation of the soman-acetylcholinesterase (AChE) conjugate known as aging. Oxime antidotes commonly used to reactivate organophosphate inhibited AChE are ineffective against soman, while the efficacy of the recommended nerve agent bioscavenger butyrylcholinesterase is limited by strictly stoichiometric scavenging. To overcome this limitation, we tested ex vivo, in human blood, and in vivo, in soman exposed mice, the capacity of aging-resistant human AChE mutant Y337A/F338A in combination with oxime HI-6 to act as a catalytic bioscavenger of soman. HI-6 was previously shown in vitro to efficiently reactivate this mutant upon soman, as well as VX, cyclosarin, sarin, and paraoxon, inhibition. We here demonstrate that ex vivo, in whole human blood, 1 µM soman was detoxified within 30 min when supplemented with 0.5 µM Y337A/F338A AChE and 100 µM HI-6. This combination was further tested in vivo. Catalytic scavenging of soman in mice improved the therapeutic outcome and resulted in the delayed onset of toxicity symptoms. Furthermore, in a preliminary in vitro screen we identified an even more efficacious oxime than HI-6, in a series of 42 pyridinium aldoximes, and 5 imidazole 2-aldoxime N-propylpyridinium derivatives. One of the later imidazole aldoximes, RS-170B, was a 2-3-fold more effective reactivator of Y337A/F338A AChE than HI-6 due to the smaller imidazole ring, as indicated by computational molecular models, that affords a more productive angle of nucleophilic attack.


Assuntos
Acetilcolinesterase/genética , Acetilcolinesterase/farmacologia , Substâncias para a Guerra Química/toxicidade , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Oximas/farmacologia , Compostos de Piridínio/farmacologia , Soman/toxicidade , Acetilcolinesterase/metabolismo , Animais , Humanos , Camundongos , Modelos Moleculares , Mutação Puntual
5.
Chemistry ; 20(35): 11101-10, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25059647

RESUMO

(Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo-, and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air-tolerant reactions can be performed at room temperature with 1.25 equivalents of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones, and phosphonates. Post-functionalization of the halogenated azole products can be accomplished by using palladium-catalyzed cross-coupling reactions and by manipulation of reactive amide groups. The lack of catalysis observed with [Cp*RuCl(cod)] (Cp* = pentamethylcyclopentadienyl) is attributed to steric demands of the Cp* (η(5)-C5Me5) ligand in comparison to the parent Cp (η(5)-C5H5). This hypothesis is supported by the poor reactivity of [(η(5)-C5Me4CF3)RuCl(cod)], which serves as a an isosteric mimic of Cp* and as an isoelectronic analogue of Cp.


Assuntos
Alcinos/química , Azidas/química , Nitrilas/química , Óxidos/química , Rutênio/química , Triazóis/síntese química , Azidas/síntese química , Catálise , Ciclização , Reação de Cicloadição , Estrutura Molecular
6.
J Med Chem ; 57(4): 1378-89, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24571195

RESUMO

Intoxication by organophosphate (OP) nerve agents and pesticides should be addressed by efficient, quickly deployable countermeasures such as antidotes reactivating acetylcholinesterase or scavenging the parent OP. We present here synthesis and initial in vitro characterization of 14 imidazole aldoximes and their structural refinement into three efficient reactivators of human butyrylcholinesterase (hBChE) inhibited covalently by nerve agent OPs, sarin, cyclosarin, VX, and the OP pesticide metabolite, paraoxon. Rapid reactivation of OP-hBChE conjugates by uncharged and nonprotonated tertiary imidazole aldoximes allows the design of a new OP countermeasure by conversion of hBChE from a stoichiometric to catalytic OP bioscavenger with the prospect of oral bioavailability and central nervous system penetration. The enhanced in vitro reactivation efficacy determined for tertiary imidazole aldoximes compared to that of their quaternary N-methyl imidazolium analogues is attributed to ion pairing of the cationic imidazolium with Asp 70, altering a reactive alignment of the aldoxime with the phosphorus in the OP-hBChE conjugate.


Assuntos
Butirilcolinesterase/metabolismo , Imidazóis/farmacologia , Compostos Organofosforados/metabolismo , Oximas/farmacologia , Catálise , Imidazóis/química , Modelos Moleculares , Estrutura Molecular , Oximas/química
7.
J Am Chem Soc ; 136(1): 195-202, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24295389

RESUMO

Rhodium(II) azavinyl carbenes, conveniently generated from 1-sulfonyl-1,2,3-triazoles, undergo a facile, mild, and convergent formal 1,3-insertion into N-H and O-H bonds of primary and secondary amides, various alcohols, and carboxylic acids to afford a wide range of vicinally bisfunctionalized (Z)-olefins with perfect regio- and stereoselectivity. Utilizing the distinctive functionality installed through these reactions, a number of subsequent rearrangements and cyclizations expand the repertoire of valuable organic building blocks constructed by reactions of transition-metal carbene complexes, including α-allenyl ketones and amino-substituted heterocycles.


Assuntos
Compostos Aza/química , Metano/análogos & derivados , Ródio/química , Compostos de Vinila/química , Amidas/química , Ácidos Carboxílicos/química , Catálise , Cristalografia por Raios X , Metano/química , Estrutura Molecular , Estereoisomerismo
8.
Chem Biol Interact ; 203(1): 67-71, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22975155

RESUMO

A library of more than 200 novel uncharged oxime reactivators was used to select and refine lead reactivators of human acetylcholinesterase (hAChE) covalently conjugated with sarin, cyclosarin, VX, paraoxon and tabun. N-substituted 2-hydroxyiminoacetamido alkylamines were identified as best reactivators and reactivation kinetics of the lead oximes, RS41A and RS194B, were analyzed in detail. Compared to reference pyridinium reactivators, 2PAM and MMB4, molecular recognition of RS41A reflected in its Kox constant was compromised by an order of magnitude on average for different OP-hAChE conjugates, without significant differences in the first order maximal phosphorylation rate constant k(2). Systematic structural modifications of the RS41A lead resulted in several-fold improvement with reactivator, RS194B. Kinetic analysis indicated K(ox) reduction for RS194B as the main kinetic constant leading to efficient reactivation. Subtle structural modifications of RS194B were used to identify essential determinants for efficient reactivation. Computational molecular modeling of RS41A and RS194B interactions with VX inhibited hAChE, bound reversibly in Michaelis type complex and covalently in the pentacoordinate reaction intermediate suggests that the faster reactivation reaction is a consequence of a tighter RS194B interactions with hAChE peripheral site (PAS) residues, in particular with D74, resulting in lower interaction energies for formation of both the binding and reactivation states. Desirable in vitro reactivation properties of RS194B, when coupled with its in vivo pharmacokinetics and disposition in the body, reveal the potential of this oxime design as promising centrally and peripherally active antidotes for OP toxicity.


Assuntos
Acetilcolinesterase/metabolismo , Reativadores da Colinesterase/farmacologia , Oximas/farmacologia , Acetamidas/química , Acetamidas/farmacologia , Acetilcolinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/química , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Modelos Moleculares , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Oximas/química , Paraoxon/toxicidade , Sarina/toxicidade
9.
Chem Biol Interact ; 203(1): 77-80, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22960624

RESUMO

Organophosphates (OP) inhibit acetylcholinesterase (AChE, EC 3.1.1.7), both in peripheral tissues and central nervous system (CNS), causing adverse and sometimes fatal effects due to the accumulation of neurotransmitter acetylcholine (ACh). The currently used therapy, focusing on the reactivation of inhibited AChE, is limited to peripheral tissues because commonly used quaternary pyridinium oxime reactivators do not cross the blood brain barrier (BBB) at therapeutically relevant levels. A directed library of thirty uncharged oximes that contain tertiary amine or imidazole protonable functional groups that should cross the BBB as unionized species was tested as tabun-hAChE conjugate reactivators along with three reference oximes: DAM (diacetylmonoxime), MINA (monoisonitrosoacetone), and 2-PAM. The oxime RS150D [N-((1-(3-(2-((hydroxyimino)methyl)-1H-imidazol-1-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)benzamide] was highlighted as the most promising reactivator of the tabun-hAChE conjugate. We also observed that oximes RS194B [N-(2-(azepan-1-yl)ethyl)-2-(hydroxyimino)acetamide] and RS41A [2-(hydroxyimino)-N-(2-(pyrrolidin-1-yl)ethyl)acetamide], which emerged as lead uncharged reactivators of phosphylated hAChE with other OPs (sarin, cyclosarin and VX), exhibited only moderate reactivation potency for tabun inhibited hAChE. This implies that geometry of oxime access to the phosphorus atom conjugated to the active serine is an important criterion for efficient reactivation, along with the chemical nature of the conjugated moiety: phosphorate, phosphonate, or phosphoramidate. Moreover, modification of the active center through mutagenesis enhances the rates of reactivation. The phosphoramidated-hAChE choline-binding site mutant Y337A showed three-times enhanced reactivation capacity with non-triazole imidazole containing aldoximes (RS113B, RS113A and RS115A) and acetamide derivative (RS194B) than with 2PAM.


Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacologia , Organofosfatos/toxicidade , Oximas/farmacologia , Acetilcolinesterase/genética , Barreira Hematoencefálica/efeitos dos fármacos , Domínio Catalítico/genética , Reativadores da Colinesterase/química , Reativadores da Colinesterase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Estrutura Molecular , Mutagênese Sítio-Dirigida , Oximas/química , Oximas/farmacocinética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
J Biol Chem ; 287(15): 11798-809, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22343626

RESUMO

We present a systematic structural optimization of uncharged but ionizable N-substituted 2-hydroxyiminoacetamido alkylamine reactivators of phosphylated human acetylcholinesterase (hAChE) intended to catalyze the hydrolysis of organophosphate (OP)-inhibited hAChE in the CNS. Starting with the initial lead oxime RS41A identified in our earlier study and extending to the azepine analog RS194B, reactivation rates for OP-hAChE conjugates formed by sarin, cyclosarin, VX, paraoxon, and tabun are enhanced severalfold in vitro. To analyze the mechanism of intrinsic reactivation of the OP-AChE conjugate and penetration of the blood-brain barrier, the pH dependence of the oxime and amine ionizing groups of the compounds and their nucleophilic potential were examined by UV-visible spectroscopy, (1)H NMR, and oximolysis rates for acetylthiocholine and phosphoester hydrolysis. Oximolysis rates were compared in solution and on AChE conjugates and analyzed in terms of the ionization states for reactivation of the OP-conjugated AChE. In addition, toxicity and pharmacokinetic studies in mice show significantly improved CNS penetration and retention for RS194B when compared with RS41A. The enhanced intrinsic reactivity against the OP-AChE target combined with favorable pharmacokinetic properties resulted in great improvement of antidotal properties of RS194B compared with RS41A and the standard peripherally active oxime, 2-pyridinealdoxime methiodide. Improvement was particularly noticeable when pretreatment of mice with RS194B before OP exposure was combined with RS194B reactivation therapy after the OP insult.


Assuntos
Acetamidas/química , Antídotos/química , Reativadores da Colinesterase/química , Oximas/química , Acetamidas/farmacocinética , Acetamidas/toxicidade , Acetilcolinesterase , Animais , Antídotos/farmacocinética , Antídotos/toxicidade , Encéfalo/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/farmacocinética , Reativadores da Colinesterase/toxicidade , Avaliação Pré-Clínica de Medicamentos/normas , Feminino , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dose Letal Mediana , Camundongos , Estrutura Molecular , Organofosfatos/química , Organofosfatos/toxicidade , Oximas/farmacocinética , Oximas/toxicidade , Ligação Proteica , Padrões de Referência , Relação Estrutura-Atividade , Distribuição Tecidual
11.
J Biol Chem ; 286(22): 19422-30, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21464125

RESUMO

We describe here the synthesis and activity of a new series of oxime reactivators of cholinesterases (ChEs) that contain tertiary amine or imidazole protonatable functional groups. Equilibration between the neutral and protonated species at physiological pH enables the reactivators to cross the blood-brain barrier and distribute in the CNS aqueous space as dictated by interstitial and cellular pH values. Our structure-activity analysis of 134 novel compounds considers primarily imidazole aldoximes and N-substituted 2-hydroxyiminoacetamides. Reactivation capacities of novel oximes are rank ordered by their relative reactivation rate constants at 0.67 mm compared with 2-pyridinealdoxime methiodide for reactivation of four organophosphate (sarin, cyclosarin, VX, and paraoxon) conjugates of human acetylcholinesterase (hAChE). Rank order of the rates differs for reactivation of human butyrylcholinesterase (hBChE) conjugates. The 10 best reactivating oximes, predominantly hydroxyimino acetamide derivatives (for hAChE) and imidazole-containing aldoximes (for hBChE) also exhibited reasonable activity in the reactivation of tabun conjugates. Reactivation kinetics of the lead hydroxyimino acetamide reactivator of hAChE, when analyzed in terms of apparent affinity (1/K(ox)) and maximum reactivation rate (k(2)), is superior to the reference uncharged reactivators monoisonitrosoacetone and 2,3-butanedione monoxime and shows potential for further refinement. The disparate pH dependences for reactivation of ChE and the general base-catalyzed oximolysis of acetylthiocholine reveal that distinct reactivator ionization states are involved in the reactivation of ChE conjugates and in conferring nucleophilic reactivity of the oxime group.


Assuntos
Acetilcolinesterase/química , Butirilcolinesterase/química , Reativadores da Colinesterase/química , Oximas/química , Inibidores da Colinesterase/química , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Organofosfatos/química , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA