Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37049267

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are one of the main sources of the nanoparticulate matter exposure to humans. Although several studies have demonstrated their potential toxic effects, the real nature of the correlation between NP properties and their interaction with biological targets is still far from being fully elucidated. Here, engineered TiO2 NPs with various geometries (bipyramids, plates, and rods) have been prepared, characterized and intravenously administered in healthy mice. Parameters such as biodistribution, accumulation, and toxicity have been assessed in the lungs and liver. Our data show that the organ accumulation of TiO2 NPs, measured by ICP-MS, is quite low, and this is only partially and transiently affected by the NP geometries. The long-lasting permanence is exclusively restricted to the lungs. Here, bipyramids and plates show a higher accumulation, and interestingly, rod-shaped NPs are the most toxic, leading to histopathological pulmonary alterations. In addition, they are also able to induce a transient increase in serum markers related to hepatocellular injury. These results indicate that rods, more than bipyramidal and spherical geometries, lead to a stronger and more severe biological effect. Overall, small physico-chemical differences can dramatically modify both accumulation and safety.

2.
Nanoscale ; 15(19): 8740-8753, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37097471

RESUMO

Gold nanoparticles (GNPs) are considered promising candidates for healthcare applications, however, their toxicity after long-term exposure to the material remains uncertain. Since the liver is the main filter organ for nanomaterials, this work was aimed at evaluating hepatic accumulation, internalisation and overall safety of well-characterised and endotoxin-free GNPs in healthy mice from 15 minutes to 7 weeks after a single administration. Our data demonstrate that GNPs were rapidly segregated into lysosomes of endothelial cells (LSEC) or Kupffer cells regardless of coating or shape but with different kinetics. Despite the long-lasting accumulation in tissues, the safety of GNPs was confirmed by liver enzymatic levels, as they were rapidly eliminated from the blood circulation and accumulated in the liver without inducing hepatic toxicity. Our results demonstrate that GNPs have a safe and biocompatibile profile despite their long-term accumulation.


Assuntos
Ouro , Nanopartículas Metálicas , Camundongos , Animais , Ouro/toxicidade , Células Endoteliais , Nanopartículas Metálicas/toxicidade , Fígado , Células de Kupffer
3.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792589

RESUMO

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Assuntos
Melanoma , Monócitos , Camundongos , Animais , Monócitos/metabolismo , Diferenciação Celular , Colesterol/metabolismo , Apresentação de Antígeno , Células Dendríticas/metabolismo , Microambiente Tumoral
4.
Elife ; 112022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36281643

RESUMO

Hepatic metastases are a poor prognostic factor of colorectal carcinoma (CRC) and new strategies to reduce the risk of liver CRC colonization are highly needed. Herein, we used mouse models of hepatic metastatization to demonstrate that the continuous infusion of therapeutic doses of interferon-alpha (IFNα) controls CRC invasion by acting on hepatic endothelial cells (HECs). Mechanistically, IFNα promoted the development of a vascular antimetastatic niche characterized by liver sinusoidal endothelial cells (LSECs) defenestration extracellular matrix and glycocalyx deposition, thus strengthening the liver vascular barrier impairing CRC trans-sinusoidal migration, without requiring a direct action on tumor cells, hepatic stellate cells, hepatocytes, or liver dendritic cells (DCs), Kupffer cells (KCs) and liver capsular macrophages (LCMs). Moreover, IFNα endowed LSECs with efficient cross-priming potential that, along with the early intravascular tumor burden reduction, supported the generation of antitumor CD8+ T cells and ultimately led to the establishment of a protective long-term memory T cell response. These findings provide a rationale for the use of continuous IFNα therapy in perioperative settings to reduce CRC metastatic spreading to the liver.


Colorectal cancer remains one of the most widespread and deadly cancers worldwide. Poor health outcomes are usually linked to diseased cells spreading from the intestine to create new tumors in the liver or other parts of the body. Treatment involves surgically removing the initial tumors in the bowel, but patient survival could be improved if, in parallel, their immune system was 'boosted' to destroy cancer cells before they can form other tumors. Interferon alpha is a small protein which helps to coordinate how the immune system recognizes and deactivates foreign agents and cancerous cells. It has recently been trialed as a colorectal cancer treatment to prevent tumors from spreading to the liver, but only with limited success. This partly because interferon-alpha is usually administered in high and pulsed doses, which cause severe side effects through the body. Instead, Tran, Ferreira, Alvarez-Moya et al. aimed to investigate whether continuously delivering lower amounts of the drug could be a better approach. This strategy was tested on mice in which colorectal cancer cells had been implanted into the wall of the large intestine. Continuous administration minimized the risk of the implanted cancer cells spreading to the liver while also creating fewer side effects. The team was able to identify an optimum delivery strategy by varying how much interferon-alpha the animals received and when. Further experiments also revealed a new mechanism by which interferon-alpha prevented the spread of colorectal cancer. Upon receiving continuous doses of the drug, a group of liver cells started to generate a physical barrier which stopped cancer cells from being able to invade the organ. The treatment also promoted long-term immune responses that targeted diseased cells while being safe for healthy tissues. If confirmed in clinical trials, these results suggest that colorectal patients undergoing tumor removal surgery may benefit from also receiving interferon-alpha through continuous delivery.


Assuntos
Neoplasias Colorretais , Interferon-alfa , Animais , Camundongos , Células Endoteliais/patologia , Linfócitos T CD8-Positivos , Fígado , Hepatócitos , Neoplasias Colorretais/patologia
5.
Nanomaterials (Basel) ; 12(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630890

RESUMO

Food-grade titanium dioxide (E171) contains variable percentages of titanium dioxide (TiO2) nanoparticles (NPs), posing concerns for its potential effects on human and animal health. Despite many studies, the actual relationship between the physicochemical properties of E171 NPs and their interaction with biological targets is still far from clear. We evaluated the impact of acute E171 administration on invertebrate and vertebrate animals. In the nematode, Caenorhabditis elegans, the administration of up to 1.0 mg/mL of E171 did not affect the worm's viability and lifespan, but significantly impaired its pharyngeal function, reproduction, and development. We also investigated whether the intravenous administration of E171 in mice (at the dose of 6 mg/kg/body weight) could result in an acute over-absorption of filter organs. A significant increase of hepatic titanium concentration and the formation of microgranulomas were observed. Interstitial inflammation and parenchymal modification were found in the lungs, coupled with titanium accumulation. This was probably due to the propensity of TiO2 NPs to agglomerate, as demonstrated by transmission electron microscopy experiments showing that the incubation of E171 with serum promoted the formation of compact clusters. Overall, these data emphasize the actual risk for human and animal exposure to E171.

6.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35358427

RESUMO

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Assuntos
Células Endoteliais , Células Endoteliais/metabolismo , Linfonodos , Análise de Sequência de RNA , Análise de Célula Única , Células Estromais , Fatores de Transcrição/metabolismo
7.
Sci Signal ; 15(722): eabb0384, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35192415

RESUMO

Bleeding correlates with disease severity in viral hemorrhagic fevers. We found that the increase in type I interferon (IFN-I) in mice caused by infection with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV; an arenavirus) reduced the megakaryocytic expression of genes encoding enzymes involved in lipid biosynthesis (cyclooxygenase 1 and thromboxane A synthase 1) and a thrombopoietic transcription factor (Nf-e2). The decreased expression of these genes was associated with reduced numbers of circulating platelets and defects in the arachidonic acid synthetic pathway, thereby suppressing serotonin release from δ-granules in platelets. Bleeding resulted when severe thrombocytopenia and altered platelet function reduced the amount of platelet-derived serotonin below a critical threshold. Bleeding was facilitated by the absence of the activity of the kinase Lyn or the administration of aspirin, an inhibitor of arachidonic acid synthesis. Mouse platelets were not directly affected by IFN-I because they lack the receptor for the cytokine (IFNAR1), suggesting that transfusion of normal platelets into LCMV-infected mice could increase the amount of platelet-released serotonin and help to control hemorrhage.


Assuntos
Coriomeningite Linfocítica , Animais , Plaquetas/metabolismo , Hemorragia/metabolismo , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/metabolismo , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Serotonina/metabolismo
8.
ACS Nano ; 15(6): 9701-9716, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34009950

RESUMO

Over the last years, advancements in the use of nanoparticles for biomedical applications have clearly showcased their potential for the preparation of improved imaging and drug-delivery systems. However, compared to the vast number of currently studied nanoparticles for such applications, only a few successfully translate into clinical practice. A common "barrier" that prevents nanoparticles from efficiently delivering their payload to the target site after administration is related to liver filtering, mainly due to nanoparticle uptake by macrophages. This work reports the physicochemical and biological investigation of disulfide-bridged organosilica nanoparticles with cage-like morphology, OSCs, assessing in detail their bioaccumulation in vivo. The fate of intravenously injected 20 nm OSCs was investigated in both healthy and tumor-bearing mice. Interestingly, OSCs exclusively colocalize with hepatic sinusoidal endothelial cells (LSECs) while avoiding Kupffer-cell uptake (less than 6%) under both physiological and pathological conditions. Our findings suggest that organosilica nanocages hold the potential to be used as nanotools for LSECs modulation, potentially impacting key biological processes such as tumor cell extravasation and hepatic immunity to invading metastatic cells or a tolerogenic state in intrahepatic immune cells in autoimmune diseases.


Assuntos
Células Endoteliais , Nanopartículas , Animais , Sistemas de Liberação de Medicamentos , Células de Kupffer , Fígado , Camundongos
9.
Gels ; 7(1)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440908

RESUMO

Adenocarcinoma of the colon is the most common malignant neoplasia of the gastrointestinal tract and is a major contributor to mortality worldwide. Invasiveness and metastatic behavior are typical of malignant tumors and, because of its portal drainage, the liver is the closest capillary bed available in this case, hence the common site of metastatic dissemination. Current therapies forecast total resection of primary tumor when possible and partial liver resection at advanced stages, along with systemic intravenous therapies consisting of chemotherapeutic agents such as 5-fluorouracil. These cures are definitely not exempt from drawbacks and heavy side effects. Biocompatible polymeric networks, both in colloids and bulk forms, able to absorb large quantities of water and load a variety of molecules-belong to the class of innovative drug delivery systems, thus suitable for the purpose and tunable on each patient can represent a promising alternative. Indeed, the implantation of polymeric scaffolds easy to synthesize can substitute chemotherapy and combination therapies scheduling, shortening side effects. Moreover, they do not require a surgical removal thanks to spontaneous degradation and guarantees an extended and regional cargo release, maintaining high drug concentrations. In this review, we focus our attention on the key role of polymeric networks as drug delivery systems potentially able to counteract this dramatic disease.

10.
Front Immunol ; 11: 1122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670275

RESUMO

Acute inflammation is a complex biological response of tissues to harmful stimuli, such as pathogens or cell damage, and is essential for immune defense and proper healing. However, unresolved inflammation can lead to chronic disorders, including cancer and fibrosis. The High Mobility Group Box 1 (HMGB1) protein is a Damage-Associated Molecular Pattern (DAMP) molecule that orchestrates key events in inflammation by switching among mutually exclusive redox states. Fully reduced HMGB1 (frHMGB1) supports immune cell recruitment and tissue regeneration, while the isoform containing a disulphide bond (dsHMGB1) promotes secretion of inflammatory mediators by immune cells. Although it has been suggested that the tissue itself determines the redox state of the extracellular space and of released HMGB1, the dynamics of HMGB1 oxidation in health and disease are unknown. In the present work, we analyzed the expression of HMGB1 redox isoforms in different inflammatory conditions in skeletal muscle, from acute injury to muscle wasting, in tumor microenvironment, in spleen, and in liver after drug intoxication. Our results reveal that the redox modulation of HMGB1 is tissue-specific, with high expression of dsHMGB1 in normal spleen and liver and very low in muscle, where it appears after acute damage. Similarly, dsHMGB1 is highly expressed in the tumor microenvironment while it is absent in cachectic muscles from the same tumor-bearing mice. These findings emphasize the accurate and dynamic regulation of HMGB1 redox state, with the presence of dsHMGB1 tightly associated with leukocyte infiltration. Accordingly, we identified circulating, infiltrating, and resident leukocytes as reservoirs and transporters of dsHMGB1 in tissue and tumor microenvironment, demonstrating that the redox state of HMGB1 is controlled at both tissue and cell levels. Overall, our data point out that HMGB1 oxidation is a timely and spatially regulated process in physiological and pathological conditions. This precise modulation might play key roles to finetune inflammatory and regenerative processes.


Assuntos
Proteína HMGB1/metabolismo , Animais , Caquexia/imunologia , Caquexia/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Proteína HMGB1/deficiência , Proteína HMGB1/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Fígado/imunologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/imunologia , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Oxirredução , Baço/imunologia , Baço/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/fisiologia
11.
Nanotoxicology ; 13(8): 1087-1101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271314

RESUMO

Titanium dioxide (TiO2) is widely used in pharmaceuticals preparations, cosmetics, and as a food additive (E171). It contains microparticles and a fraction of nanoparticles (NPs) which can be absorbed systemically by humans after ingestion. Increasing concern has been aroused about the impact of oral exposure to TiO2 NPs from dietary and non-dietary sources on human health. In spite of several toxicological studies conducted in recent years, a solid risk assessment of oral exposure to E171 has not been satisfactorily achieved. We investigated whether repeated oral administration of E171 to mice at a dose level (5 mg/kg body weight for 3 days/week for 3 weeks) comparable to estimated human dietary exposure, results in TiO2 deposition in the digestive system and internal organs, and in molecular and cellular alterations associated with an inflammatory response. To reproduce the first phase of digestion, a new administration approach involving the dripping of the E171 suspension into the mouth of mice was applied. Significant accumulation of titanium was observed in the liver and intestine of E171-fed mice; in the latter a threefold increase in the number of TiO2 particles was also measured. Titanium accumulation in liver was associated with necroinflammatory foci containing tissue monocytes/macrophages. Three days after the last dose, increased superoxide production and inflammation were observed in the stomach and intestine. Overall, the present study indicates that the risk for human health associated with dietary exposure to E171 needs to be carefully considered.


Assuntos
Aditivos Alimentares/farmacocinética , Aditivos Alimentares/toxicidade , Inflamação/induzido quimicamente , Nanopartículas Metálicas/toxicidade , Titânio/farmacocinética , Titânio/toxicidade , Administração Oral , Animais , Esquema de Medicação , Aditivos Alimentares/administração & dosagem , Aditivos Alimentares/química , Humanos , Intestinos , Fígado/metabolismo , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Camundongos , Titânio/administração & dosagem
12.
Acta Biomater ; 73: 458-469, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689381

RESUMO

The identification of alternative biocompatible magnetic NPs for advanced clinical application is becoming an important need due to raising concerns about iron accumulation in soft issues associated to the administration of superparamagnetic iron oxide nanoparticles (NPs). Here, we report on the performance of previously synthetized iron-doped hydroxyapatite (FeHA) NPs as contrast agent for magnetic resonance imaging (MRI). The MRI contrast abilities of FeHA and Endorem® (dextran coated iron oxide NPs) were assessed by 1H nuclear magnetic resonance relaxometry and their performance in healthy mice was monitored by a 7 Tesla scanner. FeHA applied a higher contrast enhancement, and had a longer endurance in the liver with respect to Endorem® at iron equality. Additionally, a proof of concept of FeHA use as scintigraphy imaging agent for positron emission tomography (PET) and single photon emission computed tomography (SPECT) was given labeling FeHA with 99mTc-MDP by a straightforward surface functionalization process. Scintigraphy/x-ray fused imaging and ex vivo studies confirmed its dominant accumulation in the liver, and secondarily in other organs of the mononuclear phagocyte system. FeHA efficiency as MRI-T2 and PET-SPECT imaging agent combined to its already reported intrinsic biocompatibility qualifies it as a promising material for innovative nanomedical applications. STATEMENT OF SIGNIFICANCE: The ability of iron-doped hydroxyapatite nanoaprticles (FeHA) to work in vivo as imaging agents for magnetic resonance (MR) and nuclear imaging is demonstrated. FeHA applied an higher MR contrast in the liver, spleen and kidneys of mice with respect to Endorem®. The successful radiolabeling of FeHA allowed for scintigraphy/X-ray and ex vivo biodistribution studies, confirming MR results and envisioning FeHA application for dual-imaging.


Assuntos
Durapatita/química , Compostos Férricos/química , Magnetismo , Nanopartículas de Magnetita/química , Animais , Meios de Contraste , Dextranos/química , Ferro/química , Leucócitos Mononucleares/citologia , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanotecnologia , Fagócitos/citologia , Baço/diagnóstico por imagem , Termogravimetria , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Difração de Raios X
13.
J Exp Med ; 215(1): 303-318, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29203538

RESUMO

Inflammation and tissue regeneration follow tissue damage, but little is known about how these processes are coordinated. High Mobility Group Box 1 (HMGB1) is a nuclear protein that, when released on injury, triggers inflammation. We previously showed that HMGB1 with reduced cysteines is a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine. Here we report that fully reduced HMGB1 orchestrates muscle and liver regeneration via CXCR4, whereas disulfide HMGB1 and its receptors TLR4/MD-2 and RAGE (receptor for advanced glycation end products) are not involved. Injection of HMGB1 accelerates tissue repair by acting on resident muscle stem cells, hepatocytes, and infiltrating cells. The nonoxidizable HMGB1 mutant 3S, in which serines replace cysteines, promotes muscle and liver regeneration more efficiently than the wild-type protein and without exacerbating inflammation by selectively interacting with CXCR4. Overall, our results show that the reduced form of HMGB1 coordinates tissue regeneration and suggest that 3S may be used to safely accelerate healing after injury in diverse clinical contexts.


Assuntos
Proteína HMGB1/metabolismo , Regeneração Hepática/fisiologia , Músculos/metabolismo , Músculos/fisiologia , Receptores CXCR4/metabolismo , Animais , Linhagem Celular , Fatores Quimiotáticos/metabolismo , Citocinas/metabolismo , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/fisiologia , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cicatrização/fisiologia
14.
Sci Transl Med ; 9(411)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021165

RESUMO

Targeted genome editing in hematopoietic stem/progenitor cells (HSPCs) is an attractive strategy for treating immunohematological diseases. However, the limited efficiency of homology-directed editing in primitive HSPCs constrains the yield of corrected cells and might affect the feasibility and safety of clinical translation. These concerns need to be addressed in stringent preclinical models and overcome by developing more efficient editing methods. We generated a humanized X-linked severe combined immunodeficiency (SCID-X1) mouse model and evaluated the efficacy and safety of hematopoietic reconstitution from limited input of functional HSPCs, establishing thresholds for full correction upon different types of conditioning. Unexpectedly, conditioning before HSPC infusion was required to protect the mice from lymphoma developing when transplanting small numbers of progenitors. We then designed a one-size-fits-all IL2RG (interleukin-2 receptor common γ-chain) gene correction strategy and, using the same reagents suitable for correction of human HSPC, validated the edited human gene in the disease model in vivo, providing evidence of targeted gene editing in mouse HSPCs and demonstrating the functionality of the IL2RG-edited lymphoid progeny. Finally, we optimized editing reagents and protocol for human HSPCs and attained the threshold of IL2RG editing in long-term repopulating cells predicted to safely rescue the disease, using clinically relevant HSPC sources and highly specific zinc finger nucleases or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9). Overall, our work establishes the rationale and guiding principles for clinical translation of SCID-X1 gene editing and provides a framework for developing gene correction for other diseases.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Subunidade gama Comum de Receptores de Interleucina/genética , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos SCID
15.
EMBO Mol Med ; 8(2): 155-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769348

RESUMO

Colorectal cancer (CRC) metastatic dissemination to the liver is one of the most life-threatening malignancies in humans and represents the leading cause of CRC-related mortality. Herein, we adopted a gene transfer strategy into mouse hematopoietic stem/progenitor cells to generate immune-competent mice in which TEMs-a subset of Tie2(+) monocytes/macrophages found at peritumoral sites-express interferon-alpha (IFNα), a pleiotropic cytokine with anti-tumor effects. Utilizing this strategy in mouse models of CRC liver metastasis, we show that TEMs accumulate in the proximity of hepatic metastatic areas and that TEM-mediated delivery of IFNα inhibits tumor growth when administered prior to metastasis challenge as well as on established hepatic lesions, improving overall survival. Further analyses unveiled that local delivery of IFNα does not inhibit homing but limits the early phases of hepatic CRC cell expansion by acting on the radio-resistant hepatic microenvironment. TEM-mediated IFNα expression was not associated with systemic side effects, hematopoietic toxicity, or inability to respond to a virus challenge. Along with the notion that TEMs were detected in the proximity of CRC metastases in human livers, these results raise the possibility to employ similar gene/cell therapies as tumor site-specific drug-delivery strategies in patients with CRC.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Neoplasias Colorretais/complicações , Terapia Genética/métodos , Interferon-alfa/metabolismo , Neoplasias Hepáticas/prevenção & controle , Neoplasias Hepáticas/terapia , Metástase Neoplásica/prevenção & controle , Animais , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/terapia , Modelos Animais de Doenças , Humanos , Camundongos , Metástase Neoplásica/terapia , Análise de Sobrevida
17.
Cell ; 161(3): 486-500, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25892224

RESUMO

Effector CD8(+) T cells (CD8 TE) play a key role during hepatotropic viral infections. Here, we used advanced imaging in mouse models of hepatitis B virus (HBV) pathogenesis to understand the mechanisms whereby these cells home to the liver, recognize antigens, and deploy effector functions. We show that circulating CD8 TE arrest within liver sinusoids by docking onto platelets previously adhered to sinusoidal hyaluronan via CD44. After the initial arrest, CD8 TE actively crawl along liver sinusoids and probe sub-sinusoidal hepatocytes for the presence of antigens by extending cytoplasmic protrusions through endothelial fenestrae. Hepatocellular antigen recognition triggers effector functions in a diapedesis-independent manner and is inhibited by the processes of sinusoidal defenestration and capillarization that characterize liver fibrosis. These findings reveal the dynamic behavior whereby CD8 TE control hepatotropic pathogens and suggest how liver fibrosis might reduce CD8 TE immune surveillance toward infected or transformed hepatocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Fígado/imunologia , Monitorização Imunológica , Animais , Movimento Celular , Células Endoteliais/metabolismo , Hepatite B/patologia , Hepatócitos/metabolismo , Ácido Hialurônico/metabolismo , Fígado/citologia , Cirrose Hepática , Camundongos , Camundongos Endogâmicos C57BL , Adesividade Plaquetária , Organismos Livres de Patógenos Específicos
19.
Cell Mol Immunol ; 12(3): 264-8, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25578311

RESUMO

Platelets play a known role in the maintenance of vascular homeostasis, but these cells are emerging as important cellular mediators of acute and chronic inflammatory diseases. Platelets are key elements in the pathogenesis of acute and chronic liver disease associated with hepatitis B virus (HBV) infection by promoting the accumulation of virus-specific CD8(+) T cells and nonspecific inflammatory cells into the liver parenchyma. This review discusses major platelet functions in immune and inflammatory responses, with an emphasis on recent pre-clinical studies that suggest that the inhibition of platelet activation pathways represent an alternative therapeutic strategy with potential use in the reduction of virus-specific T cell-mediated chronic inflammation, liver fibrosis and hepatocellular carcinoma in patients who are chronically infected with HBV.


Assuntos
Plaquetas/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinoma Hepatocelular/prevenção & controle , Vírus da Hepatite B/imunologia , Hepatite B Crônica/terapia , Neoplasias Hepáticas/prevenção & controle , Fígado/patologia , Inibidores da Agregação Plaquetária/uso terapêutico , Animais , Plaquetas/imunologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/etiologia , Citotoxicidade Imunológica , Avaliação Pré-Clínica de Medicamentos , Fibrose , Hepatite B Crônica/sangue , Hepatite B Crônica/complicações , Humanos , Inflamação/sangue , Inflamação/complicações , Inflamação/terapia , Fígado/imunologia , Fígado/virologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/etiologia , Ativação Plaquetária/efeitos dos fármacos
20.
Semin Oncol ; 41(3): 402-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25023356

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC). Among the pathogenetic factors triggered by HBV, virus-specific CD8(+) T cells play and important role in disease pathogenesis by promoting necroinflammatory liver damage. Accordingly, amelioration of immune-mediated chronic liver injury may prevent HCC. Platelets facilitate this process by sustaining the hepatic accumulation of virus-specific CD8(+) T cells and subsequently other virus nonspecific inflammatory cells that contribute to liver disease. Importantly, a recent study shows that the long-term use of clinically relevant doses of the anti-platelet drugs aspirin and clopidogrel, administered after the onset of liver disease, in an HBV transgenic mouse model of immune-mediated chronic hepatitis and HCC, can prevent hepatocarcinogenesis improving overall survival. Platelets therefore, act as key players in the pathogenesis of HBV-associated liver cancer supporting the notion that immune-mediated necroinflammatory liver disease is sufficient to trigger HCC and that interference with platelet activation may have clinical implications for HCC prevention.


Assuntos
Plaquetas/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/complicações , Imunidade Inata/imunologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Animais , Plaquetas/patologia , Humanos , Neoplasias Hepáticas/sangue , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA