Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Soft Matter ; 20(10): 2301-2309, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358394

RESUMO

Two-dimensional shape-morphing networks are common in biological systems and have garnered attention due to their nontrivial physical properties that emanate from their cellular nature. Here, we present the fabrication and characterization of anisotropic shape-morphing networks composed of thermoresponsive polymeric microfibers. By strategically positioning fibers with varying responses, we construct networks that exhibit directional actuation. The individual segments within the network display either a linear extension or buckling upon swelling, depending on their radius and length, and the transition between these morphing behaviors resembles Landau's second-order phase transition. The microscale variations in morphing behaviors are translated into observable macroscopic effects, wherein regions undergoing linear expansion retain their shape upon swelling, whereas buckled regions demonstrate negative compressibility and shrink. Manipulating the macroscale morphing by adjusting the properties of the fibrous microsegments offers a means to modulate and program morphing with mesoscale precision and unlocks novel opportunities for developing programmable microscale soft robotics and actuators.

2.
ACS Macro Lett ; 12(6): 814-820, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272912

RESUMO

Di- and triblock amphiphiles can form different mesophases ranging from micelles to hydrogels depending on their chemical structures, hydrophilic to hydrophobic ratios, and their ratio in the mixture. In addition, their different architectures dictate their exchange rate between the assembled and unimer states and consequently affect their responsiveness toward enzymatic degradation. Here we report the utilization of the different reactivities of di- and triblock amphiphiles, having exactly the same hydrophilic to lipophilic balance, toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from (i) micelles to (ii) hydrogel and finally to (iii) dissolved polymers. We show that the rate of transition between the mesophases can be programmed by changing the ratio of the amphiphiles in the formulation, and that the hydrogels can maintain encapsulated cargo, which was loaded into the micelles. The reported results demonstrate the ability of molecular architecture to serve as a tool for programming smart formulations to adopt different structures and functions.

3.
Polymers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299336

RESUMO

Hierarchically structured polymeric fibers, composed of structural nanoscale motifs that assemble into a microscale fiber are frequently found in natural fibers including cellulose and silk. The creation of synthetic fibers with nano-to-microscale hierarchical structures represents a promising avenue for the development of novel fabrics with distinctive physical, chemical, and mechanical characteristics. In this work, we introduce a novel approach for creating polyamine-based core-sheath microfibers with controlled hierarchical architectures. This approach involves a polymerization-induced spontaneous phase separation and subsequent chemical fixation. Through the use of various polyamines, the phase separation process can be manipulated to produce fibers with diverse porous core architectures, ranging from densely packed nanospheres to segmented "bamboo-stem" morphology. Moreover, the nitrogen-rich surface of the core enables both the chemisorption of heavy metals and the physisorption of proteins and enzymes. Our method offers a new set of tools for the production of polymeric fibers with novel hierarchical morphologies, which has a high potential for a wide range of applications such as filtering, separation, and catalysis.

4.
Nanoscale Adv ; 4(5): 1368-1374, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36133692

RESUMO

A key aspect of the use of conventional fabrics as smart textiles and wearable electronics is to incorporate a means of electrical conductivity into single polymer fibres. We present the transformation of thin polymer fibres and fabrics into conductive materials by in situ growth of a thin, optically transparent gold-silver nanowire (NW) mesh with a relatively low metal loading directly on the surface of polymer fibres. Demonstrating the method on poly(lactic-co-glycolic) acid and nylon microfibres, we show that the NW network morphology depends on the diameter of the polymer fibres, where at small diameters (1-2 µm), the NWs form a randomly oriented network, but for diameters above several micrometers, the NWs wrap around the fibres transversally. This phenomenon is associated with the stiffness of the surfactant templates used for the NW formation. The NW-decorated fibres exhibit a significant increase in conductivity. Moreover, single fibres can be stretched up to ∼15% before losing the electrical conductivity, while non-woven meshes could be stretched by about 25% before losing the conductivity. We believe that the approach demonstrated here can be extended to other polymeric fibres and that these flexible and transparent metal-coated polymer fibres could be useful for various smart electronic textile applications.

5.
Int J Mol Sci ; 22(5)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33808946

RESUMO

Bone tissue engineering is a rapidly developing, minimally invasive technique for regenerating lost bone with the aid of biomaterial scaffolds that mimic the structure and function of the extracellular matrix (ECM). Recently, scaffolds made of electrospun fibers have aroused interest due to their similarity to the ECM, and high porosity. Hyaluronic acid (HA) is an abundant component of the ECM and an attractive material for use in regenerative medicine; however, its processability by electrospinning is poor, and it must be used in combination with another polymer. Here, we used electrospinning to fabricate a composite scaffold with a core/shell morphology composed of polycaprolactone (PCL) polymer and HA and incorporating a short self-assembling peptide. The peptide includes the arginine-glycine-aspartic acid (RGD) motif and supports cellular attachment based on molecular recognition. Electron microscopy imaging demonstrated that the fibrous network of the scaffold resembles the ECM structure. In vitro biocompatibility assays revealed that MC3T3-E1 preosteoblasts adhered well to the scaffold and proliferated, with significant osteogenic differentiation and calcium mineralization. Our work emphasizes the potential of this multi-component approach by which electrospinning, molecular self-assembly, and molecular recognition motifs are combined, to generate a leading candidate to serve as a scaffold for bone tissue engineering.


Assuntos
Diferenciação Celular , Ácido Hialurônico/química , Osteoblastos/citologia , Osteogênese , Fragmentos de Peptídeos/química , Poliésteres/química , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Proliferação de Células , Camundongos
6.
ACS Appl Mater Interfaces ; 13(10): 12491-12500, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661621

RESUMO

Metal-organic frameworks (MOFs) exhibit an exceptional surface area-to-volume ratio, variable pore sizes, and selective binding, and hence, there is an ongoing effort to advance their processability for broadening their utilization in different applications. In this work, we demonstrate a general scheme for fabricating freestanding MOF-embedded polymeric fibers, in which the fibers themselves act as microreactors for the in situ growth of the MOF crystals. The MOF-embedded fibers are obtained via a two-step process, in which, initially, polymer solutions containing the MOF precursors are electrospun to obtain microfibers, and then, the growth of MOF crystals is initiated and performed via antisolvent-induced crystallization. Using this approach, we demonstrate the fabrication of composite microfibers containing two types of MOFs: copper (II) benzene-1,3,5-tricarboxylic acid (HKUST-1) and zinc (II) 2-methylimidazole (ZIF-8). The MOF crystals grow from the fiber's core toward its outer rims, leading to exposed MOF crystals that are well rooted within the polymer matrix. The MOF fibers obtained using this method can reach lengths of hundreds of meters and exhibit mechanical strength that allows arranging them into dense, flexible, and highly durable nonwoven meshes. We also examined the use of the MOF fiber meshes for the immobilization of the enzymes catalase and horse radish peroxidase (HRP), and the enzyme-MOF fabrics exhibit improved performance. The MOF-embedded fibers, demonstrated in this work, hold promise for different applications including separation of specific chemical species, selective catalysis, and sensing and pave the way to new MOF-containing performance fabrics and active membranes.

7.
J Phys Chem Lett ; 10(12): 3465-3471, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31184156

RESUMO

Herein we employed a first-principles method based on density functional theory to investigate the surface energy and growth kinetics of wurtzite nanoplatelets to elucidate why nanoplatelets exhibit a uniform thickness of eight monolayers. We synthesized a series of wurtzite nanoplatelets (ZnSe, ZnS, ZnTe, and CdSe) with an atomically uniform thickness of eight monolayers. As a representative example, the growth mechanism of 1.39 nm thick (eight monolayers) wurtzite ZnSe nanoplatelets was studied to substantiate the proposed growth kinetics. The results show that the growth of the seventh and eighth layers along the [112̅0] direction of 0.99 nm (six monolayers) ZnSe magic-size nanoclusters is accessible, whereas the growth of the ninth layer is unlikely to occur because the formation energy is large. This work not only gives insights into the synthesis of atomically uniform thick wurtzite semiconductor nanoplatelets but also opens up new avenues to their applications in light-emitting diodes, catalysis, detectors, and lasers.

8.
Nanoscale ; 11(21): 10190-10197, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31112179

RESUMO

Herein we report a nanorod couple heterostructure made of dual semiconductors, in which two parallelly aligned ZnSe nanorods are connected by the growth of ZnS on both end and side facets, producing hetero-ZnS (short arms)-ZnSe (long arms)/ZnS shell nanorod couples. As evidenced by electronic structure studies, both experimental and theoretical, such core/shell nanorod couple heterostructures can act as a platform to precisely tailor the quantum confinement of charge carriers between the constituting components within a single nano-object, generating blue fluorescence after the overgrowth of an alloyed ZnCdS layer on the heterostructures. We foresee the mechanistic insights gained and electronic structures revealed in this work would shed light on the rational design of more complex heterostructures with novel functionalities.

9.
Small ; 12(11): 1432-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26797691

RESUMO

Chemically functional core/shell microtubes made of biodegradable polymers are fabricated using coaxial electrospinning. The luminal walls are chemically functionalized, allowing for regioselective chemical binding or adsorption inside the microtube. Attaching catalytic nanoparticles or enzymes to the luminal walls converts the microtubes into bubble-propelled microrockets. Upon exposure to ultrasound, the microtubes undergo shape shifting, transforming them into picoliter-scale containers.


Assuntos
Nanopartículas/química , Nanotecnologia/métodos , Polímeros/química , Ácido Láctico/química , Microscopia Confocal , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Prata/química , Imagem com Lapso de Tempo
10.
Nano Lett ; 15(5): 3341-50, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25817944

RESUMO

Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

11.
J Am Chem Soc ; 137(15): 5066-73, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25774673

RESUMO

Materials which induce molecular motion without external input offer unique opportunities for spatial manipulation of molecules. Here, we present the use of polyacrylamide hydrogel films containing built-in chemical gradients (enthalpic gradients) to direct molecular transport. Using a cationic tertiary amine gradient, anionic molecules were directionally transported up to several millimeters. A 40-fold concentration of anionic molecules dosed in aerosol form on a substrate to a small region at the center of a radially symmetric cationic gradient was observed. The separation of mixtures of charged dye molecules was demonstrated using a boronic acid-to-cationic gradient where one molecule was attracted to the boronic acid end of the gradient, and the other to the cationic end of the gradient. Theoretical and computational analysis provides a quantitative description of such anisotropic molecular transport, and reveals that the gradient-imposed drift velocity is in the range of hundreds of nanometers per second, comparable to the transport velocities of biomolecular motors. This general concept of enthalpy gradient-directed molecular transport should enable the autonomous processing of a diversity of chemical species.


Assuntos
Resinas Acrílicas/química , Ácidos Borônicos/química , Fracionamento Químico , Difusão , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrólise , Cinética , Estrutura Molecular , Tamanho da Partícula
12.
Nat Mater ; 13(3): 301-7, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553656

RESUMO

Colloidal nanocrystal synthesis provides a powerful approach for creating unique nanostructures of relevance for applications. Here, we report that wurtzite ZnSe nanorod couples connected by twinning structures can be synthesized by means of a self-limited assembly process. Unlike for individual nanorods, the band-edge states calculated for the nanorod couples are predominantly confined to the short edges of the structure and this leads to low photoluminescence polarization anisotropy, as confirmed by single-particle fluorescence. Through a cation-exchange approach, the composition of nanorod couples can be readily expanded to additional materials, such as CdSe and PbSe. We anticipate that this family of nanorod-couple structures with distinct compositions and controlled properties will constitute an ideal system for the investigation of electronic coupling effects between individual nanorod components on the nanoscale, with relevance to applications in optics, photocatalysis and optoelectronic devices.

13.
J Phys Chem Lett ; 4(3): 502-7, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281747

RESUMO

Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.

15.
Phys Chem Chem Phys ; 14(10): 3505-12, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22307543

RESUMO

We investigated systematically the temperature dependence of the spectral properties such as the band gap, bandwidth and fluorescence intensity of CdSe/CdS dot-in-rod nanocrystals. These asymmetry nanoparticles were synthesized by seeded growth techniques with band alignment of the type-I and quasi type-II with initial core sizes of 3.3 and 2.3 nm, respectively. With increasing temperature the band gap decreases and bandwidth increases, largely due to exciton-phonon scattering. Anomalous variations of the band gap and bandwidth were observed at 200-240 K, and the variations are attributed to the anisotropic strain in the CdSe/CdS interface due to temperature dependent lattice mismatch. The integrated intensity of fluorescence shows two variation regimes. In the low temperature regime, the intensity remained roughly constant due to the temperature dependent carrier mobility and trapping by the defect states in the CdS shell. However, in the higher temperature regime, the intensity decreased quickly due to thermal/phonon assisted escape from the CdSe dot. The barrier depths are estimated to be about 557 and 285 meV for type-I and quasi type-II samples, respectively.

16.
ACS Nano ; 6(3): 2758-65, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22314148

RESUMO

Fluorescence resonance energy transfer (FRET) involving a semiconductor nanoparticle (NP) acting as a donor, attached to multiple acceptors, is becoming a common tool for sensing, biolabeling, and energy transfer applications. Such nanosystems, with dimensions that are in the range of FRET interactions, exhibit unique characteristics that are related to the shape and dimensionality of the particles and to the spatial distribution of the acceptors. Understanding the effect of these parameters is of high importance for describing the FRET process in such systems and for utilizing them for different applications. In order to demonstrate these dimensionality effects, the FRET between CdSe/CdS core/shell NPs with different geometries and dimensionalities and Atto 590 dye molecules acting as multiple acceptors covalently linked to the NP surface is examined. Steady-state emission and temporal decay measurements were performed on the NPs, ranging from spherical to rod-like shaped systems, as a function of acceptor concentration. Changes in the NP geometry, and consequently in the distributions of acceptors, lead to distinctively different FRET behaviors. The results are analyzed using a modified restricted geometries model, which captures the dimensionality of the acceptor distribution and allows extracting the concentration of dye molecules on the surface of the NP for both spherical and elongated NPs. The results obtained from the model are in good agreement with the experimental results. The approach may be useful for following the spatial dynamics of self-assembly and for a wide variety of sensing applications.


Assuntos
Corantes/química , Transferência Ressonante de Energia de Fluorescência , Nanopartículas/química , Compostos de Cádmio/química , Modelos Teóricos , Compostos de Selênio/química , Sulfetos/química
17.
ACS Nano ; 6(1): 176-82, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22136306

RESUMO

We utilize single-molecule spectroscopy combined with time-correlated single-photon counting to probe the electron transfer (ET) rates from various types of semiconductor hetero-nanocrystals, having either type-I or type-II band alignment, to single-walled carbon nanotubes. A significantly larger ET rate was observed for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum dots and to CdSe/CdS dot-in-rod structures. Furthermore, such rapid ET dynamics can compete with both Auger and radiative recombination processes, with significance for effective photovoltaic operation.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Semicondutores , Titânio/química , Condutividade Elétrica , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
18.
Nano Lett ; 11(5): 2054-60, 2011 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-21480584

RESUMO

We report the synthesis of CdSe/CdS rod in rod core/shell heterostructures. These rods, synthesized using a seeded-growth approach, show narrow distributions of rod diameters and lengths and exhibit high emission quantum efficiencies and highly polarized emission. The degree of polarization is controlled by the inner core rod dimensions, and it is equal or up to 1.5 times higher than the polarization of equivalent sphere in rod systems. Using the method of photoselection we measure the polarization anisotropy at different excitation wavelengths and study the interplay between electronic contribution and dielectric effects in determining the absorption and emission polarization.


Assuntos
Nanotecnologia/métodos , Nanotubos/química , Absorção , Compostos de Cádmio/química , Microscopia Eletrônica de Transmissão/métodos , Pontos Quânticos , Compostos de Selênio/química , Semicondutores , Espectrometria de Fluorescência/métodos , Sulfetos/química
19.
Nano Lett ; 10(8): 3068-72, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20604571

RESUMO

The mixed 0D-1D dimensionality of heterostructured semiconductor nanorods, resulting from the dot-in-rod architecture, raises intriguing questions concerning the location and confinement of the exciton and the origin of the fluorescence in such structures. Using apertureless near-field distance-dependent lifetime imaging together with AFM topography, we directly map the emission and determine its location with high precision along different types of nanorods. We find that the fluorescence is emanating from a sub-20 nm region, correlated to the seed location, clearly indicating exciton localization.

20.
Nano Lett ; 9(10): 3470-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19655723

RESUMO

Multiple excitations in core/shell CdSe/CdS-seeded nanorods of different core diameters are studied by quasi-cw multiexciton spectroscopy and envelope function theoretical calculations. For core diameters below 2.8 nm, a transfer from binding to repulsive behavior is detected for the biexciton, accompanied by significant reduction of the triexciton oscillator strength. These characteristics indicate a transition of the electronic excited states from type-I localization in the core to a quasi-type-II delocalization along the entire rod as the core diameter decreases, in agreement with theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA