Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(8): 707, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970695

RESUMO

Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP induced health effects. The Eurasian otter is an apex predator in (semi-)aquatic habitats feeding primarily on fish. Furthermore, the species is classified as "near threatened" on the IUCN Red List. Thus, the Eurasian otter is of conservation concern and may serve as a bioindicator for MP pollution. Feces can be used to detect pollutants, including MP. Initial studies confirmed the presence of MP in otter feces (= spraints). However, as specific, validated protocols targeting at an efficient and standardized extraction of MP from otter spraints are missing, experimental results reported from different groups are challenging to compare. Therefore, we (i) present steps towards a standardized protocol for the extraction of MP from otter feces, (ii) give recommendations for field sample collection of otter spraints, and (iii) provide a user-friendly step-by-step workflow for MP extraction and analysis. Applying this framework to field samples from five study sites along the River Inn (n = 50), we detected MP of different sizes and shapes (ranging from microfibers to road abrasion and tire wear) in all otter spraint samples.


Assuntos
Monitoramento Ambiental , Fezes , Microplásticos , Lontras , Rios , Poluentes Químicos da Água , Animais , Monitoramento Ambiental/métodos , Rios/química , Fezes/química , Poluentes Químicos da Água/análise , Microplásticos/análise
2.
Ecol Evol ; 12(1): e8460, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127012

RESUMO

In modern wildlife ecology, spatial population genetic methods are becoming increasingly applied. Especially for animal species in fragmented landscapes, preservation of gene flow becomes a high priority target in order to restore genetic diversity and prevent local extinction. Within Central Europe, the Alps represent the core distribution area of the black grouse, Lyrurus tetrix. At its easternmost Alpine range, events of subpopulation extinction have already been documented in the past decades. Molecular data combined with spatial analyses can help to assess landscape effects on genetic variation and therefore can be informative for conservation management. Here, we addressed whether the genetic pattern of the easternmost Alpine black grouse metapopulation system is driven by isolation by distance or isolation by resistance. Correlative ecological niche modeling was used to assess geographic distances and landscape resistances. We then applied regression-based approaches combined with population genetic analyses based on microsatellite data to disentangle effects of isolation by distance and isolation by resistance among individuals and subpopulations. Although population genetic analyses revealed overall low levels of genetic differentiation, the ecological niche modeling showed subpopulations to be clearly delimited by habitat structures. Spatial genetic variation could be attributed to effects of isolation by distance among individuals and isolation by resistance among subpopulations, yet unknown effects might factor in. The easternmost subpopulation was the most differentiated, and at the same time, immigration was not detected; hence, its long-term survival might be threatened. Our study provides valuable insights into the spatial genetic variation of this small-scale metapopulation system of Alpine black grouse.

3.
PeerJ ; 9: e11192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986985

RESUMO

BACKGROUND: Dragonflies and damselflies (Odonata) are important components in biomonitoring due to their amphibiotic lifecycle and specific habitat requirements. They are charismatic and popular insects, but can be challenging to identify despite large size and often distinct coloration, especially the immature stages. DNA-based assessment tools rely on validated DNA barcode reference libraries evaluated in a supraregional context to minimize taxonomic incongruence and identification mismatches. METHODS: This study reports on findings from the analysis of the most comprehensive DNA barcode dataset for Central European Odonata to date, with 103 out of 145 recorded European species included and publicly deposited in the Barcode of Life Data System (BOLD). The complete dataset includes 697 specimens (548 adults, 108 larvae) from 274 localities in 16 countries with a geographic emphasis on Central Europe. We used BOLD to generate sequence divergence metrics and to examine the taxonomic composition of the DNA barcode clusters within the dataset and in comparison with all data on BOLD. RESULTS: Over 88% of the species included can be readily identified using their DNA barcodes and the reference dataset provided. Considering the complete European dataset, unambiguous identification is hampered in 12 species due to weak mitochondrial differentiation and partial haplotype sharing. However, considering the known species distributions only two groups of five species possibly co-occur, leading to an unambiguous identification of more than 95% of the analysed Odonata via DNA barcoding in real applications. The cases of small interspecific genetic distances and the observed deep intraspecific variation in Cordulia aenea (Linnaeus, 1758) are discussed in detail and the corresponding taxa in the public reference database are highlighted. They should be considered in future applications of DNA barcoding and metabarcoding and represent interesting evolutionary biological questions, which call for in depth analyses of the involved taxa throughout their distribution ranges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA