Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4553, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941320

RESUMO

ZrS2 is transition metal dichalcogenides (TMDCs) which is believed one of the most talented applicants to fabricate photovoltaics. Therefore, we present here for the first-time numerical simulation of novel inorganic ZrS2/CuO heterojunction solar cells employing SCAPS-1D. The influence of the thickness, carrier concentration, and bandgap for both the window and absorber layers on the solar cell fundamental parameters was explored intensely. Our results reveal that the solar cell devices performance is mainly affected by many parameters such as the depletion width (Wd), built-in voltage (Vbi), collection length of charge carrier, the minority carrier lifetime, photogenerated current, and recombination rate. The η of 23.8% was achieved as the highest value for our simulated devices with the Voc value of 0.96 V, the Jsc value of 34.2 mA/cm2, and the FF value of 72.2%. Such efficiency was obtained when the CuO band gap, thickness, and carrier concentration were 1.35 eV, 5.5 µm, and above 1018 cm-3, respectively, and for the ZrS2 were 1.4 eV, 1 µm, and less than 1020 cm-3, respectively. Our simulated results indicate that the inorganic ZrS2/CuO heterojunction solar cells are promising to fabricate low-cost, large-scale, and high-efficiency photovoltaic devices.

2.
Opt Express ; 30(21): 37957-37970, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258374

RESUMO

Evaporated charge extraction layers from organic molecular materials are vital in perovskite-based solar cells. For opto-electronic device optimization their complex refractive indices must be known for the visible and near infrared wavelength regime; however, accurate determination from thin organic films below 50 nm can be challenging. By combining spectrophotometry, variable angle spectroscopic ellipsometry, and X-ray reflectivity with an algorithm that simultaneously fits all available spectra, the complex refractive index of evaporated Spiro-TTB and C60 layers is determined with high accuracy. Based on that, an optical losses analysis for perovskite silicon solar cells shows that 15 nm of Spiro-TTB in the front of a n-i-p device reduces current by only 0.1 mA/cm2, compared to a substantial loss of 0.5 mA/cm2 due to 15 nm of C60 in a p-i-n device. Optical device simulation predicts high optical generation current densities of 19.7 and 20.1 mA/cm2 for the fully-textured, module-integrated p-i-n and n-i-p devices, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA