Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Vasc Surg Cases Innov Tech ; 10(3): 101465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38694482

RESUMO

PLOD1-related kyphoscoliotic Ehlers-Danlos syndrome is a rare, autosomal recessive connective tissue disorder characterized by congenital hypotonia, early-onset, progressive kyphoscoliosis, and generalized joint hypermobility. PLOD1-kyphoscoliotic Ehlers-Danlos syndrome is also associated with heightened vascular fragility, resulting in an elevated susceptibility to recurrent vascular complications such as arterial aneurysms, dissection, and spontaneous arterial rupture. We report the cases of two affected brothers: a 13-year-old boy presenting with spontaneous rupture of a celiac artery aneurysm and a 10-year-old boy presenting with a rapidly enlarging celiac artery aneurysm requiring urgent repair.

2.
Neurology ; 102(7): e209258, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38484275

RESUMO

We describe the case of a 19-month-old girl presenting with gross motor delays, hypotonia, diminished deep tendon reflexes, hyperCKaemia, extensive white matter changes on MRI brain, and electromyography studies consistent with myopathy. The differential diagnosis for infantile-onset hypotonia and muscle weakness is broad. It includes numerous subtypes of genetic disorders, including congenital muscular dystrophies, congenital myopathies, congenital myasthenic syndromes, spinal muscular atrophy, single-gene genetic syndromes, and inborn errors of metabolism. We outline our clinical approach leading to the diagnosis of a distinctive genetic neuromuscular condition essential for neurologists and geneticists working with patients of all ages to recognize.


Assuntos
Doenças Musculares , Distrofias Musculares , Substância Branca , Feminino , Humanos , Lactente , Hipotonia Muscular/etiologia , Substância Branca/diagnóstico por imagem , Doenças Musculares/genética , Distrofias Musculares/genética , Raciocínio Clínico
3.
Am J Med Genet A ; 194(7): e63559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38421105

RESUMO

The disconnected (disco)-interacting protein 2 (DIP2) gene was first identified in D. melanogaster and contains a DNA methyltransferase-associated protein 1 (DMAP1) binding domain, Acyl-CoA synthetase domain and AMP-binding sites. DIP2 regulates axonal bifurcation of the mushroom body neurons in D. melanogaster and is required for axonal regeneration in the neurons of C. elegans. The DIP2 homologues in vertebrates, Disco-interacting protein 2 homolog A (DIP2A), Disco-interacting protein 2 homolog B (DIP2B), and Disco-interacting protein 2 homolog C (DIP2C), are highly conserved and expressed widely in the central nervous system. Although there is evidence that DIP2C plays a role in cognition, reports of pathogenic variants in these genes are rare and their significance is uncertain. We present 23 individuals with heterozygous DIP2C variants, all manifesting developmental delays that primarily affect expressive language and speech articulation. Eight patients had de novo variants predicting loss-of-function in the DIP2C gene, two patients had de novo missense variants, three had paternally inherited loss of function variants and six had maternally inherited loss-of-function variants, while inheritance was unknown for four variants. Four patients had cardiac defects (hypertrophic cardiomyopathy, atrial septal defects, and bicuspid aortic valve). Minor facial anomalies were inconsistent but included a high anterior hairline with a long forehead, broad nasal tip, and ear anomalies. Brainspan analysis showed elevated DIP2C expression in the human neocortex at 10-24 weeks after conception. With the cases presented herein, we provide phenotypic and genotypic data supporting the association between loss-of-function variants in DIP2C with a neurocognitive phenotype.


Assuntos
Haploinsuficiência , Transtornos do Desenvolvimento da Linguagem , Humanos , Masculino , Feminino , Haploinsuficiência/genética , Transtornos do Desenvolvimento da Linguagem/genética , Transtornos do Desenvolvimento da Linguagem/patologia , Transtornos do Desenvolvimento da Linguagem/fisiopatologia , Pré-Escolar , Criança , Lactente , Fenótipo , Predisposição Genética para Doença
4.
Genet Med ; 26(2): 101012, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37924259

RESUMO

PURPOSE: To evaluate the diagnostic utility of publicly funded clinical exome sequencing (ES) for patients with suspected rare genetic diseases. METHODS: We prospectively enrolled 297 probands who met eligibility criteria and received ES across 5 sites in Ontario, Canada, and extracted data from medical records and clinician surveys. Using the Fryback and Thornbury Efficacy Framework, we assessed diagnostic accuracy by examining laboratory interpretation of results and assessed diagnostic thinking by examining the clinical interpretation of results and whether clinical-molecular diagnoses would have been achieved via alternative hypothetical molecular tests. RESULTS: Laboratories reported 105 molecular diagnoses and 165 uncertain results in known and novel genes. Of these, clinicians interpreted 102 of 105 (97%) molecular diagnoses and 6 of 165 (4%) uncertain results as clinical-molecular diagnoses. The 108 clinical-molecular diagnoses were in 104 families (35% diagnostic yield). Each eligibility criteria resulted in diagnostic yields of 30% to 40%, and higher yields were achieved when >2 eligibility criteria were met (up to 45%). Hypothetical tests would have identified 61% of clinical-molecular diagnoses. CONCLUSION: We demonstrate robustness in eligibility criteria and high clinical validity of laboratory results from ES testing. The importance of ES was highlighted by the potential 40% of patients that would have gone undiagnosed without this test.


Assuntos
Exoma , Doenças Raras , Humanos , Estudos Prospectivos , Sequenciamento do Exoma , Doenças Raras/diagnóstico , Doenças Raras/genética , Testes Genéticos/métodos , Ontário
5.
Clin Case Rep ; 11(8): e7827, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37637203

RESUMO

Non-immune hydrops is a prenatal finding which can occur due to an underlying genetic diagnosis such as common chromosomal aneuploidy (Trisomy 21, Turner syndrome etc.). It is extremely rare to have more than one genetic cause of hydrops fetalis in a single pregnancy. This report describes a dichorionic diamniotic pregnancy for a consanguineous couple where noninvasive prenatal testing was "high risk" for Trisomy 21. Family declined amniocentesis and opted for postnatal genetic testing. The pregnancy was later complicated with severe hydrops fetalis leading to demise for one of the twins, and a premature delivery of the other twin who had remarkable collodion not in keeping with Trisomy 21. Postnatal genetic investigations confirmed both Trisomy 21 and prenatal lethal Gaucher disease in the survivor twin. This case report highlights some of the prenatal diagnostic challenges for a consanguineous couple where a rare cause of fetal hydrops was concealed in a setting of a common chromosomal aneuploidy. The prompt postnatal diagnosis of perinatal lethal Gaucher disease, confirmed with undetectable glucocerebrosidase enzyme activity, assisted the family in the decision of providing palliative care for their infant who was quickly deteriorating. The importance of postnatal genetic evaluation and its impact on immediate patient management in an NICU setting is emphasized. This dual diagnosis was significant for the couple as it explained pervious pregnancy losses and has important future recurrence risk implications.

6.
Brain ; 146(8): 3273-3288, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36757831

RESUMO

In the field of rare diseases, progress in molecular diagnostics led to the recognition that variants linked to autosomal-dominant neurodegenerative diseases of later onset can, in the context of biallelic inheritance, cause devastating neurodevelopmental disorders and infantile or childhood-onset neurodegeneration. TOR1A-associated arthrogryposis multiplex congenita 5 (AMC5) is a rare neurodevelopmental disorder arising from biallelic variants in TOR1A, a gene that in the heterozygous state is associated with torsion dystonia-1 (DYT1 or DYT-TOR1A), an early-onset dystonia with reduced penetrance. While 15 individuals with AMC5-TOR1A have been reported (less than 10 in detail), a systematic investigation of the full disease-associated spectrum has not been conducted. Here, we assess the clinical, radiological and molecular characteristics of 57 individuals from 40 families with biallelic variants in TOR1A. Median age at last follow-up was 3 years (0-24 years). Most individuals presented with severe congenital flexion contractures (95%) and variable developmental delay (79%). Motor symptoms were reported in 79% and included lower limb spasticity and pyramidal signs, as well as gait disturbances. Facial dysmorphism was an integral part of the phenotype, with key features being a broad/full nasal tip, narrowing of the forehead and full cheeks. Analysis of disease-associated manifestations delineated a phenotypic spectrum ranging from normal cognition and mild gait disturbance to congenital arthrogryposis, global developmental delay, intellectual disability, absent speech and inability to walk. In a subset, the presentation was consistent with foetal akinesia deformation sequence with severe intrauterine abnormalities. Survival was 71%, with higher mortality in males. Death occurred at a median age of 1.2 months (1 week-9 years), due to respiratory failure, cardiac arrest or sepsis. Analysis of brain MRI studies identified non-specific neuroimaging features, including a hypoplastic corpus callosum (72%), foci of signal abnormality in the subcortical and periventricular white matter (55%), diffuse white matter volume loss (45%), mega cisterna magna (36%) and arachnoid cysts (27%). The molecular spectrum included 22 distinct variants, defining a mutational hotspot in the C-terminal domain of the Torsin-1A protein. Genotype-phenotype analysis revealed an association of missense variants in the 3-helix bundle domain to an attenuated phenotype, while missense variants near the Walker A/B motif as well as biallelic truncating variants were linked to early death. In summary, this systematic cross-sectional analysis of a large cohort of individuals with biallelic TOR1A variants across a wide age-range delineates the clinical and genetic spectrum of TOR1A-related autosomal-recessive disease and highlights potential predictors for disease severity and survival.


Assuntos
Distonia , Distúrbios Distônicos , Malformações do Sistema Nervoso , Masculino , Humanos , Estudos Transversais , Mutação/genética , Fenótipo , Distonia/genética , Distúrbios Distônicos/genética , Chaperonas Moleculares/genética
7.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36164730

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-tRNA Sintetases/genética , Mutação , RNA de Transferência/genética , Suplementos Nutricionais
9.
J Obstet Gynaecol Can ; 44(7): 798-802, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35131504

RESUMO

A 35-year-old woman was referred to genetics for 2 soft markers but was also found to have polyhydramnios. The couple were Old Order Mennonite, and carrier testing allowed for targeted investigation of syndromes associated with polyhydramnios in this population. Both parents were carriers of a 7304 bp deletion in the STRADA (LYK5) gene, causing an autosomal recessive syndrome of polyhydramnios, megalencephaly, and symptomatic epilepsy. This led to early recognition and treatment of neonatal seizures. Targeted testing can significantly shorten the diagnostic odyssey and decrease the cost of investigations, an especially important consideration for families who do not accept health insurance.


Assuntos
Epilepsia , Poli-Hidrâmnios , Adulto , Canadá , Epilepsia/diagnóstico , Epilepsia/genética , Feminino , Humanos , Recém-Nascido , Poli-Hidrâmnios/diagnóstico , Poli-Hidrâmnios/genética , Gravidez , Síndrome
10.
Neuropediatrics ; 53(3): 204-207, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34852373

RESUMO

Stroke in infancy is a rare phenomenon but can lead to significant long-term disability. We present the story of a 6-month-old Old Order Amish infant with underlying Williams syndrome, a rare neurodevelopmental disorder caused by a microdeletion, encompassing the elastin gene that produces abnormalities in elastic fibers of the lungs and vessels. This infant presented with lethargy, irritability, and a new-onset generalized tonic-clonic seizure. Brain magnetic resonance imaging (MRI) was consistent with ischemic stroke in the supratentorial regions. MR angiogram demonstrated bilateral narrowing of the internal carotid arteries with "ivy sign," suggestive of Moyamoya. Moyamoya disease/syndrome is a cerebrovascular condition that is associated with progressive stenosis of the intracranial vessels and can cause ischemic stroke in young children. Targeted mutation analysis revealed a homozygous c.1411-2A > G splice site variant in the SAMHD1 gene, consistent with a diagnosis of Aicardi-Goutières syndrome type 5 (AGS5), an autosomal recessive condition with multisystem involvement. In our unique case of infantile stroke with Moyamoya syndrome and dual diagnosis of Williams syndrome and AGS5, both diagnoses likely contributed to the cerebrovascular pathology. This case report highlights the importance of suspecting and testing for multiple genetic abnormalities in children presenting with Moyamoya-related stroke.


Assuntos
Anormalidades Múltiplas , AVC Isquêmico , Doença de Moyamoya , Acidente Vascular Cerebral , Síndrome de Williams , Anormalidades Múltiplas/genética , Doenças Autoimunes do Sistema Nervoso , Criança , Pré-Escolar , Humanos , Lactente , Doença de Moyamoya/complicações , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/genética , Malformações do Sistema Nervoso , Acidente Vascular Cerebral/complicações , Síndrome de Williams/complicações , Síndrome de Williams/genética
13.
Mol Syndromol ; 12(3): 154-158, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34177431

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder that displays a wide spectrum of clinical manifestations, often affecting multiple organs including the kidneys, brain, lungs, and skin. A pathogenic mutation in either the TSC1 or TSC2 gene can be detected in almost 85% of the cases, with mosaicism accounting for about half of the remaining cases. We report a case of TSC diagnosed clinically, requesting genetic counselling regarding reproductive risks. No mutation was identified on initial testing of peripheral blood; however, mosaicism for a likely pathogenic frameshift variant in TSC2 was detected at a level of 15% in renal angiomyolipoma tissue. Despite widespread clinical manifestations of TCS, this variant was not detected in skin fibroblasts or saliva, raising the possibility this is an isolated somatic mutation in renal tissue with the underlying germline mutation not yet identified. This case highlights the difficulties when counselling patients with mosaicism regarding their reproductive risks and prenatal diagnostic options.

14.
Am J Med Genet A ; 185(8): 2507-2513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33988295

RESUMO

Neonatal Marfan syndrome is a severe, early onset presentation of pathogenic variants in FBN1. Because of the significant cardiac involvement and early mortality, nearly all reported cases have been de novo, and the disorder has not been documented to be inherited from a symptomatic parent. Here, we present a female infant with neonatal Marfan syndrome who was born to a father with Marfan syndrome. Prior to the birth of his daughter, the father had been found to have an FBN1 missense variant of uncertain clinical significance. Initial familial variant testing of the infant did not reveal the same missense variant, but Sanger sequencing of FBN1 subsequently identified a pathogenic splice site variant. The father was then found to have 10%-20% mosaicism for the same splice site variant.


Assuntos
Fibrilina-1/genética , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/genética , Mosaicismo , Mutação , Sítios de Splice de RNA , Adulto , Alelos , Ecocardiografia , Evolução Fatal , Feminino , Estudos de Associação Genética/métodos , Predisposição Genética para Doença , Genótipo , Humanos , Recém-Nascido , Masculino , Linhagem , Fenótipo , Análise de Sequência de DNA , Avaliação de Sintomas
15.
Genet Med ; 23(7): 1234-1245, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33824499

RESUMO

PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities.


Assuntos
Haploinsuficiência , Deficiência Intelectual , Animais , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Mutação de Sentido Incorreto , Fenótipo
17.
Genet Med ; 23(6): 1065-1074, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33547396

RESUMO

PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested.


Assuntos
Metilação de DNA , Epigenômica , Canadá , Europa (Continente) , Humanos , Síndrome
18.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498634

RESUMO

A growing number of genetic neurodevelopmental disorders are known to be associated with unique genomic DNA methylation patterns, called episignatures, which are detectable in peripheral blood. The intellectual developmental disorder, X-linked, syndromic, Armfield type (MRXSA) is caused by missense variants in FAM50A. Functional studies revealed the pathogenesis to be a spliceosomopathy that is characterized by atypical mRNA processing during development. In this study, we assessed the peripheral blood specimens in a cohort of individuals with MRXSA and detected a unique and highly specific DNA methylation episignature associated with this disorder. We used this episignature to construct a support vector machine model capable of sensitive and specific identification of individuals with pathogenic variants in FAM50A. This study contributes to the expanding number of genetic neurodevelopmental disorders with defined DNA methylation episignatures, provides an additional understanding of the associated molecular mechanisms, and further enhances our ability to diagnose patients with rare disorders.


Assuntos
Metilação de DNA , Deficiência Intelectual Ligada ao Cromossomo X/genética , Adulto , Estudos de Casos e Controles , Criança , Proteínas de Ligação a DNA/genética , Epigenoma , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/etiologia , Pessoa de Meia-Idade , Modelos Genéticos , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a RNA/genética
19.
Genet Med ; 23(2): 384-395, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33173220

RESUMO

PURPOSE: We sought to delineate the genotypic and phenotypic spectrum of female and male individuals with X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). METHODS: Twenty-five individuals (15 males, 10 females) with causative variants in MSL3 were ascertained through exome or genome sequencing at ten different sequencing centers. RESULTS: We identified multiple variant types in MSL3 (ten nonsense, six frameshift, four splice site, three missense, one in-frame-deletion, one multi-exon deletion), most proven to be de novo, and clustering in the terminal eight exons suggesting that truncating variants in the first five exons might be compensated by an alternative MSL3 transcript. Three-dimensional modeling of missense and splice variants indicated that these have a deleterious effect. The main clinical findings comprised developmental delay and intellectual disability ranging from mild to severe. Autism spectrum disorder, muscle tone abnormalities, and macrocephaly were common as well as hearing impairment and gastrointestinal problems. Hypoplasia of the cerebellar vermis emerged as a consistent magnetic resonance image (MRI) finding. Females and males were equally affected. Using facial analysis technology, a recognizable facial gestalt was determined. CONCLUSION: Our aggregated data illustrate the genotypic and phenotypic spectrum of X-linked, MSL3-related disorder (Basilicata-Akhtar syndrome). Our cohort improves the understanding of disease related morbidity and allows us to propose detailed surveillance guidelines for affected individuals.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtorno do Espectro Autista/genética , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Feminino , Genes Ligados ao Cromossomo X , Genótipo , Humanos , Deficiência Intelectual/genética , Masculino , Fenótipo , Sequenciamento do Exoma
20.
Cureus ; 13(12): e20354, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35036194

RESUMO

This paper discusses an interesting case of pan plexopathy and the difficulties associated with the diagnostic processes based on patient-specific circumstances. It walks through the major differential of the etiology of the patient's particular presenting symptoms and the associated diagnostic and therapeutic process by which this particular patient was treated. In the discussion, the relevant anatomy of the brachial plexus and the surrounding structures in both the cervical and the axillary regions is discussed and key clinical pearls that became apparent throughout the diagnostic workup that was significant for a hematoma and therapeutic process aimed at providing symptomatic relief until recovery to baseline. This case study discusses the benefits, drawbacks, and financial costs of utilizing the major different imaging modalities such as CT, MRI, or Point of Care Ultrasound (POCUS). Finally, this study provides a new diagnostic algorithm for the selection of the imaging modality based on the major principles of value-based care as detailed by both the Radiological Society of North America and the European Society of Radiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA