Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39436975

RESUMO

Functionalization of hybrid organic molecules as layers on ZnO nanoflowers (NFs) gives an excellent combination of sensing toward visible light and vapors of various volatile organic compounds (VOCs). In this work, hybrid organic molecules functionalized ZnO NFs were utilized for the photoinduced detection of benzylamine at room temperature. The ZnO NFs were synthesized via a facile solution route and functionalized with four different porphyrin-conjugated molecules namely (i) pyrene-porphyrin (PP), (ii) pyrene- porphyrinato zinc (ZnPP), (iii) triphenylamine- porphyrin (TP) and (iv) triphenylamine- porphyrinato zinc (ZnTP). The diameter of the flower-like structure was found to be ∼3.2 µm with the thickness of petals being ∼24.1 nm. The gas adsorption performance of the functionalized ZnO NFs on light activation at room temperature was studied by using a scanning Kelvin probe (SKP) system. The improved adsorption properties of the samples can be attributed to the heterojunctions and light activation. In particular, an enhanced response of ZnTP functionalized ZnO (ZnTPZ) toward benzylamine was observed. Further, static gas sensing experiments using ZnTPZ under various concentrations (1, 3, 5, 10, 15, and 25 ppm) of benzylamine vapors both in dark and visible light conditions have exhibited a linear increase in the response. The selectively enhanced response of ZnTPZ compared to that of pristine ZnO was thus confirmed at 1 ppm of benzylamine. The sensitivity and limit of detection of the ZnTPZ sensor were calculated to be 0.0292 ppm-1 and 197 ppb, respectively. The coordination metal (Zn) has helped in effective charge transfer between benzylamine and ZnTPZ by providing additional active sites for interactions. Also, density functional theory calculations demonstrated the role of the hybrid organic molecules on the sensor surface in improving gas adsorption. Further, fresh cabbage was utilized for real sample analysis with the proposed sensor under visible light illumination conditions, and a linear response was obtained for low ppm evaluation at room temperature. Overall, the obtained results suggest the development of novel ZnTPZ-based light-activated gas sensors for low ppm benzylamine detection at room temperature. These kinds of sensors can be used to track the freshness of vegetables as they are transported from farms to commercial outlets.

2.
ACS Appl Mater Interfaces ; 16(40): 53405-53418, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39319508

RESUMO

The demand for environmentally friendly, reliable, and cost-effective electrodes for glucose sensor technology has become a major research area in the paradigm shift toward green electronics. In this regard, cellulose has emerged as a promising flexible biopolymer solution with unique properties such as biocompatibility, biodegradability, nontoxicity, renewability, and sustainability. Because of their large surface area and porous structure, fibrous cellulose substrates quickly adsorb and disperse analytes at detection sites. This work focuses on utilizing glyoxal-treated cellulose (derived from brewer's spent grain (BSG)) for the fabrication of extended gate field-effect transistor (EGFET)-based glucose sensors. This investigation extends to the utilization of BSG-cellulose for glucose detection in biomimicking electrolytes (phosphate buffer saline) to facilitate glucose detection in human blood samples. The fabricated electrode demonstrates a linear range of glucose detection from 1 to 13.5 mM with a Langmuir adsorption coefficient (K) of 0.102. Also, its selectivity toward glucose over interfering molecules such as sucrose, fructose, ascorbic acid, and uric acid under physiological conditions has been demonstrated. This cellulose-based EGFET electrode exhibits a sensitivity of 6.5 µA mM-1 cm-2 with a limit of detection (LOD) of 0.135 mM. Computational studies by density functional theory calculations confirmed the higher binding affinity of glucose molecules with glyoxal-modified cellulose (-0.95 eV) than with pristine cellulose (-0.46 eV). Here, the novelty lies in the fabrication of electrodes with biodegradable catalysts and their integration into the EGFET configuration.


Assuntos
Celulose , Cobre , Diabetes Mellitus , Eletrodos , Celulose/química , Humanos , Cobre/química , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/sangue , Glicemia/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Transistores Eletrônicos , Limite de Detecção , Glucose/análise , Glioxal/química
3.
RSC Adv ; 14(38): 28182-28200, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39234523

RESUMO

Toxic metals present in drinking water pose a serious threat to the environment and human beings when present in abundance. In this work, we investigated the sensing ability of quantum dots (pristine CQDs, boron/nitrogen/sulphur (B/N/S)-doped CQDs, and BNQDs) of various sizes and morphologies (rectangular, circular, and triangular) towards toxic metals such as arsenic (As), cobalt (Co), nickel (Ni), copper (Cu), and lead (Pb) using quantum chemical density functional theory calculations in both gas and water phases. We probed the structural, electronic, and optical properties of the QDs. All the modelled QDs are energetically stable. Frontier molecular orbital analysis predicted that BNQDs are more chemically stable than all other CQDs. UV-vis absorption and Raman spectra analyses helped to understand the optical properties of all the QDs. Further, adsorption studies revealed that triangular pristine CQDs and sulphur-doped CQDs show higher adsorption affinity towards the toxic metals. The magnitude of adsorption energies follows the trend Ni > Pb > As > Cu > Co in most of the QDs. Several pristine and doped CQDs exhibited chemisorption towards the toxic metals, and hence, they can be used as adsorbents. However, a majority of BNQDs showed physisorption towards the metals, and therefore, they can be used as efficient optical sensors compared to CQDs. Further, the sensing ability of the QDs was explored through optical phenomena such as changes in UV-vis absorption spectra and fluorescence after metal adsorption. When compared to pristine CQDs and B/N/S-doped CQDs, metal complexation caused significant changes in the UV-vis absorbance peak intensities in BNQDs along with peak shifts. Moreover, metal interaction with the QDs increased their fluorescence lifetime with the highest values observed in Co-adsorbed triangular H18C46 (152.30 ns), Pb-adsorbed rectangular H15C30S (21.29 ns), and As-adsorbed circular B27N27H18 (2.99 µs) among pristine CQDs, B/N/S-doped CQDs, and BNQDs, respectively. Overall, we believe that our first-of-its-kind computational prediction of the optical sensing ability of tailor-made zero-dimensional systems such as QDs will be a great aid for experimentalists in designing novel and rapid optical probes to detect toxic metals in drinking water.

4.
Nanoscale ; 16(40): 19006-19020, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39300792

RESUMO

The construction of a potential heterojunction catalyst with proper interface alignment has become a hot topic in the scientific community to effectively utilize solar energy. In this work, a one-dimensional TiO2 nanofiber/BiOBr S-scheme heterojunction was synthesized, and charge carrier dynamics within the interface channel were explored. In addition, we incorporated mixed phase TiO2 with point defects and oxygen vacancies, which greatly promoted the initial band edge shift from the UV region. Upon the addition of BiOBr, absorption in the visible light region of the electromagnetic (EM) spectrum was observed with a decrease in the optical band gap value. The optimized BiOBr heterojunction (BTNF1.5) revealed a higher photocatalytic RhB dye degradation efficiency due to the efficient generation and separation of charge carriers upon light irradiation. The optimum sample BTNF1.5 showed a high degradation efficiency of 98.4% with a rate constant of 47.1 min-1 at 8 min of visible light irradiation, which is double than that of the pure TiO2. Electrochemical analysis, time-resolved photoluminescence and Kelvin probe measurement revealed an S-scheme charge-transfer mechanism within the BiOBr/TiO2 system. This work provides a strategy for the facile synthesis of heterojunction photocatalysts exhibiting exceptional catalytic performance.

5.
ACS Appl Mater Interfaces ; 16(14): 17219-17231, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38561895

RESUMO

Herein, we demonstrate the detection of glucose in a noninvasive and nonenzymatic manner by utilizing an extended gate field-effect transistor (EGFET) based on the organic molecule pyrene phosphonic acid (PyP4OH8) incorporated nickel metal-organic framework (NiOM-MOF). The prepared electrode responds selectively to glucose instead of sucrose, fructose, maltose, ascorbic acid, and uric acid in a 1× phosphate buffer saline solution. Also, utilizing the scanning Kelvin probe system, the sensing electrode's work function (Φ) is measured to validate the glucose-sensing mechanism. The sensitivity, detection range, response time, limit of detection, and limit of quantification of the electrode are determined to be 24.5 µA mM-1 cm-2, 20 µM to 10 mM, less than 5 s, 2.73 µM, and 8.27 µM, respectively. Most interestingly, the developed electrode follows the Michaelis-Menten kinetics, and the calculated rate constant (km) 0.07 mM indicates a higher affinity of NiOM-MOF toward glucose. The real-time analysis has revealed that the prepared electrode is sensitive to detect glucose in real human saliva, and it can be an alternative device for the noninvasive detection of glucose. Overall, the outcomes of the EGFET studies demonstrate that the prepared electrodes are well-suited for expeditious detection of glucose levels in saliva.


Assuntos
Diabetes Mellitus , Estruturas Metalorgânicas , Humanos , Glucose/análise , Eletrodos , Pirenos
6.
ACS Omega ; 9(9): 10650-10659, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463246

RESUMO

Laser-induced graphene (LIG) has emerged as a highly versatile material with significant potential in the development of electrochemical sensors. In this paper, we investigate the use of LIG and LIG functionalized with ZnO and porphyrins-ZnO as the gate electrodes of the extended gate field effect transistors (EGFETs). The resultant sensors exhibit remarkable sensitivity and selectivity, particularly toward ascorbic acid. The intrinsic sensitivity of LIG undergoes a notable enhancement through the incorporation of hybrid organic-inorganic materials. Among the variations tested, the LIG electrode coated with zinc tetraphenylporphyrin-capped ZnO nanoparticles demonstrates superior performance, reaching a limit of detection of approximately 3 nM. Furthermore, the signal ratio for 5 µM ascorbic acid relative to the same concentration of dopamine exceeds 250. The practical applicability of these sensors is demonstrated through the detection of ascorbic acid in real-world samples, specifically in a commercially available food supplement containing l-arginine. Notably, formulations with added vitamin C exhibit signals at least 25 times larger than those without, underscoring the sensors' capability to discern and quantify the presence of ascorbic acid in complex matrices. This research not only highlights the enhanced performance of LIG-based sensors through functionalization but also underscores their potential for practical applications in the analysis of vitamin-rich supplements.

7.
Small ; 20(5): e2305126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37735144

RESUMO

It is always challenging to integrate multiple functions into one material system. However, those materials/devices will address society's critical global challenges and technological demands if achieved with innovative design strategies and engineering. Here, one such material with a broader spectrum of desired properties appropriate for seven applications is identified and explored, and a glucose-sensing-triggered energy-storage mechanism is demonstrated. To date, the Titanium (Ti)-Zinc (Zn) binary alloys are investigated only as mixed phases and for a maximum of three applications. In contrast, the novel single phase of structurally stable 50 Ti-50 Zn (Ti0.5 Zn0.5 ) is synthesized and proven suitable for seven emerging applications. Interestingly, it is thermally stable up to 750 °C and possesses excellent mechanical, tribological properties and corrosion resistance. While exceptional biocompatibility is evident even up to a concentration of 500 µg mL-1 , the antibacterial activity against E. coli is also seen. Further, rapid detection and superior selectivity for glucose, along with supercabattery behavior, unambiguously demonstrate that this novel monophase is a remarkable multifunctional material than the existing mixed-phase Ti-Zn compounds. The coin-cell supercapacitor shows outstanding stability up to 30 000 cycles with >100% retention capacity. This allows us to prototype a glucose-sensing-triggered energy-storage-device system for wearable point-of-care diagnostic applications.

8.
Talanta ; 270: 125542, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109810

RESUMO

The rational development of efficient nanozymes for the colorimetric detection of targets is still challenging. Herein, Prussian blue analogues of Ni-Co-MoS2 nano boxes were fabricated for colorimetric detection of glyphosate and copper ions owing to its peroxidase like activity. At the sensing system, the Ni-Co-MoS2 nano boxes display high peroxidase activity, which could catalytically oxidize the colourless TMB to blue colour oxTMB. In presence of glyphosate in this sensing system the blue colour is diminished, ascribed to the inhibit the catalytic activity of Ni-Co-MoS2 nano boxes. Concurrently, the addition of copper ion, which result in blue colour was reappear due to the generation of glyphosate-copper complex formation. The Ni-Co-MoS2 nano boxes based colorimetric sensing platform was developed to sensitive detection of glyphosate and copper ions with low detection limit of 3 nM for glyphosate and 3.8 nM for copper. This method also displays satisfactory outcomes from real samples analysis and its good accuracy. Therefore, this work provides a great potential for rapid detection of the targets from the environments.


Assuntos
Glifosato , Peroxidase , Peroxidase/metabolismo , Cobre , Molibdênio , Oxirredução , Peroxidases , Ferrocianetos , Corantes , Colorimetria/métodos , Peróxido de Hidrogênio/análise
9.
Chemosphere ; 307(Pt 3): 135947, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948098

RESUMO

Water vapor in atmosphere is ubiquitous, and it varies according to geographical locations. Various toxic and non-toxic gases co-exist with water vapor/moisture in the atmosphere. This computational study addresses the fact that how those gases interact with water vapor. We have done quantum chemical density functional theory calculations to probe the interaction of certain gases with a finite number of water molecules in gas phase with various functionals/basis sets. An ensemble of 14 gas molecules comprising various diatomic, triatomic, and polyatomic gases have been chosen for the investigations. The intermolecular interactions are understood from the interaction energy, electrostatic potential, frontier molecular orbitals, energy gap, and natural bond orbital analyses. Furthermore, quantum molecular descriptors such as electronegativity, chemical potential, chemical hardness and electrophilicity index are calculated to have deep insight on chemical nature of the gas molecules. Additionally, we have done implicit solvent modelling using PCM, and the corresponding solvation energies have been calculated. Interestingly, all the calculations and analyses have projected the similar results that Cl2, SO2, and NH3 have very high interaction with the water clusters. To mimic various altitudes (0 km, 5 km and 10 km) in the atmosphere, thermochemistry calculations have been carried out at different temperature and pressure values. The Gibbs free energies of formation suggest that the hydration of Cl2 is higher followed by O2, SO2 and NH3 at all altitudes. Remarkably, it is found that the formation of hydrated clusters of Cl2 and O2 with 4H2O are thermodynamically favourable. On the other hand, SO2 and NH3 requires 5H2O and 3H2O to form thermodynamically favourable clusters. In summary, it is anticipated that this kind of extensive computational studies facilitate to understand the structural, electronic, chemical and thermochemical properties of hydrated atmospheric gases that leads to the formation of prenucleation clusters followed by atmospheric aerosols.

10.
Chemosphere ; 292: 133398, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34954192

RESUMO

Piezo-photocatalysis is a new concept of utilizing nanohybrids comprising piezoelectric and photocatalytic materials for enhancement in advanced oxidation process under the presence of light and mechanical energy. In this study, we explored the effectiveness of piezo-photocatalysis via examining their catalytic activity towards the degradation of azo dye (Rhodamine-B) and standard pollutant (Phenol) catalyzed by ferroelectric-semiconductor (BaTiO3-Ag2O) nanohybrids. Further, the enhancement in piezo-photocatalysis has been achieved via persulfate activation and the role of free radicals was examined by quenchers. A plausible mechanism for the improved piezo-photocatalysis of BaTiO3-Ag2O nanohybrid using persulfate activation has been discussed in detail. The removal mechanism of Rhodamine-B has been investigated using analytical techniques such as HPLC and EPR. Our experimental study demonstrated that the combination of piezo-photocatalysis with persulfate activation will provide higher reaction rate which will be beneficial towards the degradation of complex molecular pollutants derived from industrial sectors.


Assuntos
Fenóis , Titânio , Compostos de Bário , Catálise , Semicondutores
11.
Nanotechnology ; 33(7)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34749348

RESUMO

The development of electronic noses requires the control of the selectivity pattern of each sensor of the array. Organic chemistry offers a manifold of possibilities to this regard but in many cases the chemical sensitivity is not matched with the response of electronic sensor. The combination of organic and inorganic materials is an approach to transfer the chemical sensitivities of the sensor to the measurable electronic signals. In this paper, this approach is demonstrated with a hybrid material made of phthalocyanines and a bilayer structure of ZnO and TiO2. Results show that the whole spectrum of sensitivity of phthalocyanines results in changes of the resistance of the sensor, and even the adsorption of compounds, such as hexane, which cannot change the resistance of pure phthalocyanine layers, elicits changes of the sensor resistance. Furthermore, since phthalocyanines are optically active, the sensitivity in dark and visible light are different. Thus, operating the sensor in dark and light two different signals per sensors can be extracted. As a consequence, an array of 3 sensors made of different phthalocyanines results in a virtual array of six sensors. The sensor array shows a remarkable selectivity respect to a set of test compounds. Principal component analysis scores plot illustrates that hydrogen bond basicity and dispersion interaction are the dominant mechanisms of interaction.

12.
Int J Biol Macromol ; 193(Pt B): 1165-1200, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34710479

RESUMO

Today, the world population is facing an existential threat by an invisible enemy known as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) or COVID-19. It is highly contagious and has infected a larger fraction of human population across the globe on various routes of transmission. The detailed knowledge of the SARS-CoV-2 structure and clinical aspects offers an important insight into the evolution of infection, disease progression and helps in executing the different therapies effectively. Herein, we have discussed in detail about the genome structure of SARS-CoV-2 and its role in the proteomic rational spread of different muted species and pathogenesis in infecting the host cells. The mechanisms behind the viral outbreak and its immune response, the availability of existing diagnostics techniques, the treatment efficacy of repurposed drugs and the emerging vaccine trials for the SARS-CoV-2 outbreak also have been highlighted. Furthermore, the possible antiviral effects of various herbal products and their extracted molecules in inhibiting SARS-CoV-2 replication and cellular entry are also reported. Finally, we conclude our opinion on current challenges involved in the drug development, bulk production of drug/vaccines and their storage requirements, logistical procedures and limitations related to dosage trials for larger population.


Assuntos
Antivirais/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19 , Surtos de Doenças , Desenvolvimento de Medicamentos , SARS-CoV-2 , Vacinação , COVID-19/epidemiologia , COVID-19/fisiopatologia , COVID-19/terapia , COVID-19/transmissão , Humanos
13.
ACS Omega ; 5(24): 14669-14678, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596604

RESUMO

The present study focused on the development of NiMoAl-based self-lubricating composites using solid lubricants as the second phase by powder metallurgy. For this, Cr2AlC MAX phase, Cr2AlC-Ag, and MoS2 powders were mixed with the NiMoAl-based matrix and subsequently hot pressed to produce bulk composite samples. The average hardness and wear resistance of the matrix were found to be increased with the addition of MoS2, Cr2AlC MAX phase, and Cr2AlC-Ag powder to the NiMoAl matrix. The addition of Cr2AlC to NiMoAl was more effective in improving the wear resistance than MoS2. The addition of Cr2AlC and Cr2AlC-Ag has increased the hardness by about 75% than that with the addition of NiMoAl alloy. A scanning Kelvin probe system was used to study the surface properties of the tribofilm in detail through work function mapping from the edge area to the wear area (groove). Among all the samples, the one with the addition of Cr2AlC-Ag powder to the NiMoAl matrix possesses the best tribo-mechanical properties. Cr2AlC-Ag composite addition to NiMoAl was found to decrease the wear rate by one-third and to reduce the coefficient of friction by one-fourth, compared to the base NiMoAl alloy. This was attributed to the high-sintered density and formation of strong tribofilms consisting of mixed oxides such as Ag2MoO4 and Al2O3, as confirmed by micro Raman spectra.

14.
Anal Chem ; 91(8): 5116-5124, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30869871

RESUMO

Reduced graphene oxide/tin dioxide (RGO/SnO2) binary nanocomposite for acetone sensing performance was successfully studied and applied in exhaled breath detection. The influence of structural characteristics was explored by synthesizing the composite (RGO/SnO2) using the solvothermal method (GS-I) and the hydrothermal method (GS-II) by the chemical route and mechanical mixing, respectively. The nanocomposites characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier transform-infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) revealed that GS-I exhibited better surface area, surface energy and showed enhanced gas response than GS-II at an operating temperature of 200 °C. These sensors exhibited comparable response in humid environment as well, suitable for acetone sensing in exhaled breath that clearly distinguishes between healthy and diabetes subjects. The enhanced response at lower concentrations was attributed to the synergistic effect at the RGO/SnO2 interface. These results indicate that modification in the structural characteristics of RGO/SnO2 nanocomposite enhances the sensing property. Furthermore, it proved to be a promising material for potential application for point-of care, noninvasive diabetes detection.


Assuntos
Acetona/análise , Testes Respiratórios , Diabetes Mellitus/diagnóstico , Grafite/química , Nanocompostos/química , Compostos de Estanho/química , Adsorção , Eletrodos , Gases/química , Ouro/química , Voluntários Saudáveis , Humanos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Difração de Raios X
15.
Anal Chim Acta ; 810: 86-93, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24439509

RESUMO

ZnO and porphyrins have complementary properties that make their combination attractive for diverse applications such as photovoltaic and chemical sensing. Among the other features, the organic layer morphology is supposed to influence both the chemical sensitivity and the charge transfer processes. In this paper, we studied the influence of the film morphology on the sensing properties by comparing porphyrins coated ZnO nanorods obtained with two different methods. In the first approach, each porphyrin unit is grafted onto preformed ZnO nanorods by a carboxylic group as linker. The second method is a one-pot procedure, where ZnO nanorods growth occurs in the presence of the water soluble tetrakis-(4-sulfonatophenyl)porphyrin. In both cases the macrocycles share the same Zn-tetraphenylporphyrin core structure, but decorated with different peripheral groups, necessary to comply with the material growth conditions. The adsorption of volatile organic molecules has been monitored measuring the contact potential difference between the sensitive surface and a gold electrode, by means of a Kelvin probe setup. Sensitive signals have been measured both in dark and under visible light. The results show that material preparation affects both the sensitivities to gases and light. A chemometric analysis of four sensors (first and second growth method, measured in dark and in light) shows two main evidences: (a) the interaction between volatile compounds and the sensing layer is largely dominated by non-specific dispersion interaction and (b) the signal of the four sensors becomes rather uncorrelated when the contribution of the dispersion interaction is removed. These results indicate that the differences due to film morphology are enough to differentiate the sensor behaviour, even when the same porphyrin nucleus is used as sensing element. This feature provides an additional degree of freedom for the development of gas sensor arrays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA