Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vascul Pharmacol ; : 107396, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897556

RESUMO

AIMS: Neutrophils perform various functions in a circadian-dependent manner; therefore, we investigated here whether the effect of alpha1-antitrypsin (AAT), used as augmentation therapy, is dependent on the neutrophil circadian clock. AAT is a vital regulator of neutrophil functions, and its qualitative and/or quantitative defects have significant implications for the development of respiratory diseases. METHODS: Whole blood from 12 healthy women [age years, mean (SD) 29.92 (5.48) was collected twice daily, 8 h apart, and incubated for 30 min at 37 °C alone or with additions of 2 mg/ml AAT (Respreeza) and/or 5 µg/ml lipopolysaccharide (LPS) from Escherichia coli. Neutrophils were then isolated to examine gene expression, migration and phagocytosis. RESULTS: The expression of CD14, CD16, CXCR2 and SELL (encoding CD62L) genes was significantly higher while CDKN1A lower in the afternoon than in the morning neutrophils from untreated blood. Neutrophils isolated in the afternoon had higher migratory and phagocytic activity. Morning neutrophils isolated from AAT-pretreated blood showed higher expression of CXCR2 and SELL than those from untreated morning blood. Pretreatment of blood with AAT enhanced migratory properties of morning but not afternoon neutrophils. Of all genes analysed, only CXCL8 expression was strongly upregulated in morning and afternoon neutrophils isolated from LPS-pretreated blood, whereas CXCR2 expression was downregulated in afternoon neutrophils. The addition of AAT did not reverse the effects of LPS. SIGNIFICANCE: The circadian clock of myeloid cells may affect the effectiveness of various therapies, including AAT therapy used to treat patients with AAT deficiency, and needs further investigation.

2.
Lung ; 202(2): 157-170, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494528

RESUMO

PURPOSE: To investigate the transcriptome of human bronchial epithelial cells (HBEC) in response to serum from patients with different degrees of inflammation. METHODS: Serum from 19 COVID-19 patients obtained from the Hannover Unified Biobank was used. At the time of sampling, 5 patients had a WHO Clinical Progression Scale (WHO-CPS) score of 9 (severe illness). The remaining 14 patients had a WHO-CPS of below 9 (range 1-7), and lower illness. Multiplex immunoassay was used to assess serum inflammatory markers. The culture medium of HBEC was supplemented with 2% of the patient's serum, and the cells were cultured at 37 °C, 5% CO2 for 18 h. Subsequently, cellular RNA was used for RNA-Seq. RESULTS: Patients with scores below 9 had significantly lower albumin and serum levels of E-selectin, IL-8, and MCP-1 than patients with scores of 9. Principal component analysis based on 500 "core genes" of RNA-seq segregated cells into two subsets: exposed to serum from 4 (I) and 15 (II) patients. Cells from a subset (I) treated with serum from 4 patients with a score of 9 showed 5566 differentially expressed genes of which 2793 were up- and 2773 downregulated in comparison with cells of subset II treated with serum from 14 patients with scores between 1 and 7 and one with score = 9. In subset I cells, a higher expression of TLR4 and CXCL8 but a lower CDH1, ACE2, and HMOX1, and greater effects on genes involved in metabolic regulation, cytoskeletal organization, and kinase activity pathways were observed. CONCLUSION: This simple model could be useful to characterize patient serum and epithelial cell properties.


Assuntos
Inflamação , Transcriptoma , Humanos , Inflamação/genética , Inflamação/metabolismo , Células Epiteliais/metabolismo , Biomarcadores/metabolismo
3.
Microorganisms ; 11(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38004695

RESUMO

Intracellular lipid droplets (LDs) can accumulate in response to inflammation, metabolic stresses, and other physiological/pathological processes. Herein, we investigated whether spike proteins of SARS-CoV-2 induce LDs in human peripheral blood mononuclear cells (PBMCs) and in pulmonary microvascular endothelial cells (HPMECs). PBMCs or HPMECs were incubated alone or with endotoxin-free recombinant variants of trimeric spike glycoproteins (Alpha, Beta, Delta, and Omicron, 12 µg/mL). Afterward, cells were stained with Oil Red O for LDs, cytokine release was determined through ELISA, and the gene expression was analyzed through real-time PCR using TaqMan assays. Our data show that spikes induce LDs in PBMCs but not in HPMECs. In line with this, in PBMCs, spike proteins lower the expression of genes involving lipid metabolism and LD formation, such as SREBF1, HMGCS1, LDLR, and CD36. On the other hand, PBMCs exposed to spikes for 6 or 18 h did not increase in IL-1ß, IL-6, IL-8, MCP-1, and TNFα release or expression as compared to non-treated controls. Thus, spike-induced LD formation in PBMCs seems to not be related to cell inflammatory activation. Further detailed studies are warranted to investigate in which specific immune cells spikes induce LDs, and what are the pathophysiological mechanisms and consequences of this induction in vivo.

4.
J Leukoc Biol ; 113(1): 58-70, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36822165

RESUMO

Rodent models of lipopolysaccharide (LPS)-induced pulmonary inflammation are used for anti-inflammatory drug testing. We aimed to characterize mice responses to aerosolized LPS alone or with intraperitoneal (i.p.) delivery of alpha1-antitrypsin (AAT). Balb/c mice were exposed to clean air or aerosolized LPS (0.21 mg/mL) for 10 min per day, for 3 d. One hour after each challenge, animals were treated i.p. with saline or with (4 mg/kg body weight) one of the AAT preparations: native (AAT), oxidized (oxAAT), recombinant (recAAT), or peptide of AAT (C-36). Experiments were terminated 6 h after the last dose of AATs. Transcriptome data of mice lungs exposed to clean air versus LPS revealed 656 differentially expressed genes and 155 significant gene ontology terms, including neutrophil migration and toll-like receptor signaling pathways. Concordantly, mice inhaling LPS showed higher bronchoalveolar lavage fluid neutrophil counts and levels of myeloperoxidase, inducible nitric oxide synthase, IL-1ß, TNFα, KC, IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF). Plasma inflammatory markers did not increase. After i.p. application of AATs, about 1% to 2% of proteins reached the lungs but, except for GM-CSF, none of the proteins significantly influenced inflammatory markers. All AATs and C-36 significantly inhibited LPS-induced GM-CSF release. Surprisingly, only oxAAT decreased the expression of several LPS-induced inflammatory genes, such as Cxcl3, Cd14, Il1b, Nfkb1, and Nfkb2, in lung tissues. According to lung transcriptome data, oxAAT mostly affected genes related to transcriptional regulation while native AAT or recAAT affected genes of inflammatory pathways. Hence, we present a feasible mice model of local lung inflammation induced via aerosolized LPS that can be useful for systemic drug testing.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Pneumonia , alfa 1-Antitripsina , Animais , Humanos , Camundongos , Líquido da Lavagem Broncoalveolar , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , alfa 1-Antitripsina/uso terapêutico
5.
Front Pharmacol ; 13: 995869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249781

RESUMO

Human alpha-1-antitrypsin (AAT) encoded by the SERPINA1 gene, is an acute phase glycoprotein that regulates inflammatory responses via both protease inhibitory and non-inhibitory activities. We previously reported that AAT controls ATP-induced IL-1ß release from human mononuclear cells by stimulating the release of small bioactive molecules. In the current study, we aimed to elucidate the identity of these putative effectors released from human PBMCs in response to AAT, which may inhibit the LPS-induced release of IL-1ß. We pre-incubated human PBMCs alone or with different preparations of AAT (4 mg/ml) for 30 min at 37°C, 5% CO2, and collected cell supernatants filtered through centrifugal filters (cutoff 3 kDa) to eliminate AAT and other high molecular weight substances. Supernatants passed through the filters were used to culture PBMCs isolated from the autologous or a heterologous donors with or without adding LPS (1 µg/ml) for 6 h. Unexpectedly, supernatants from PBMCs pre-incubated with AAT (Zemaira®), but not with other AAT preparations tested or with oxidized AAT (Zemaira®), lowered the LPS-induced release of IL-1ß by about 25%-60% without affecting IL1B mRNA. The reversed-phase liquid chromatography coupled with mass spectrometry did not confirm the hypothesis that small pro-resolving lipid mediators released from PBMCs after exposure to AAT (Zemaira®) are responsible for lowering the LPS-induced IL-1ß release. Distinctively from other AAT preparations, AAT (Zemaira®) and supernatants from PBMCs pre-treated with this protein contained high levels of total thiols. In line, mass spectrometry analysis revealed that AAT (Zemaira®) protein contains freer Cys232 than AAT (Prolastin®). Our data show that a free Cys232 in AAT is required for controlling LPS-induced IL-1ß release from human PBMCs. Further studies characterizing AAT preparations used to treat patients with inherited AAT deficiency remains of clinical importance.

6.
Respir Res ; 22(1): 295, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789247

RESUMO

BACKGROUND: α1-Antitrypsin (AAT) is an acute phase glycoprotein, a multifunctional protein with proteinase inhibitory, anti-inflammatory and cytoprotective properties. Both preclinical and clinical experiences show that the therapy with plasma purified AAT is beneficial for a broad spectrum of inflammatory conditions. The potential effects of AAT therapy have recently been highlighted in lung transplantation (LuTx) as well. METHODS: We used a murine fully mismatched orthotopic single LuTx model (BALB/CJ as donors and C57BL/6 as recipients). Human AAT preparations (5 mg, n = 10) or vehicle (n = 5) were injected to the recipients subcutaneously prior to and intraperitoneally immediately after the LuTx. No immune suppressive drugs were administered. Three days after the transplantation, the mice were sacrificed, and biological samples were assessed. RESULTS: Histological analysis revealed significantly more severe acute rejection in the transplanted lungs of controls than in AAT treated mice (p < 0.05). The proportion of neutrophil granulocytes, B cells and the total T helper cell populations did not differ between two groups. There was no significant difference in serum CXCL1 (KC) levels. However, when compared to controls, human AAT was detectable in the serum of mice treated with AAT and these mice had a higher serum anti-elastase activity, and significantly lower proportion of Th1 and Th17 among all Th cells. Cleaved caspase-3-positive cells were scarce but significantly less abundant in allografts from recipients treated with AAT as compared to those treated with vehicle. CONCLUSION: Therapy with AAT suppresses the acute rejection after LuTx in a mouse model. The beneficial effects seem to involve anti-protease and immunomodulatory activities of AAT.


Assuntos
Rejeição de Enxerto/tratamento farmacológico , alfa 1-Antitripsina/farmacologia , Doença Aguda , Aloenxertos , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Rejeição de Enxerto/patologia , Transplante de Pulmão , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Inibidores de Serina Proteinase/farmacologia
7.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360706

RESUMO

For the treatment of severe COVID-19, supplementation with human plasma-purified α-1 antitrypsin (AAT) to patients is currently considered. AAT inhibits host proteases that facilitate viral entry and possesses broad anti-inflammatory and immunomodulatory activities. Researchers have demonstrated that an interaction between SARS-CoV-2 spike protein (S) and lipopolysaccharides (LPS) enhances pro-inflammatory responses in vitro and in vivo. Hence, we wanted to understand the potential anti-inflammatory activities of plasma-derived and recombinant AAT (recAAT) in a model of human total peripheral blood mononuclear cells (PBMCs) exposed to a combination of CHO expressed trimeric spike protein and LPS, ex vivo. We confirmed that cytokine production was enhanced in PBMCs within six hours when low levels of LPS were combined with purified spike proteins ("spike"). In the presence of 0.5 mg/mL recAAT, however, LPS/spike-induced TNF-α and IL-1ß mRNA expression and protein release were significantly inhibited (by about 46-50%) relative to LPS/spike alone. Although without statistical significance, recAAT also reduced production of IL-6 and IL-8. Notably, under the same experimental conditions, the plasma-derived AAT preparation Respreeza (used in native and oxidized forms) did not show significant effects. Our findings imply that an early pro-inflammatory activation of human PBMCs is better controlled by the recombinant version of AAT than the human plasma-derived AAT used here. Considering the increasing clinical interest in AAT therapy as useful to ameliorate the hyper-inflammation seen during COVID-19 infection, different AAT preparations require careful evaluation.


Assuntos
Anti-Inflamatórios/farmacologia , Leucócitos Mononucleares/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , alfa 1-Antitripsina/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/imunologia , Células CHO , COVID-19/terapia , Células Cultivadas , Cricetulus , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , alfa 1-Antitripsina/química , alfa 1-Antitripsina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA