Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Numer Method Biomed Eng ; 40(4): e3803, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363555

RESUMO

The deformability of blood vessels in one-dimensional blood flow models is typically described through a pressure-area relation, known as the tube law. The most used tube laws take into account the elastic and viscous components of the tension of the vessel wall. Accurately parametrizing the tube laws is vital for replicating pressure and flow wave propagation phenomena. Here, we present a novel mathematical-property-preserving approach for the estimation of the parameters of the elastic and viscoelastic tube laws. Our goal was to estimate the parameters by using ovine and human in vitro data, while constraining them to meet prescribed mathematical properties. Results show that both elastic and viscoelastic tube laws accurately describe experimental pressure-area data concerning both quantitative and qualitative aspects. Additionally, the viscoelastic tube law can provide a qualitative explanation for the observed hysteresis cycles. The two models were evaluated using two approaches: (i) allowing all parameters to freely vary within their respective ranges and (ii) fixing some of the parameters. The former approach was found to be the most suitable for reproducing pressure-area curves.


Assuntos
Hemodinâmica , Modelos Cardiovasculares , Animais , Ovinos , Humanos , Elasticidade , Artérias/fisiologia , Viscosidade
2.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34161275

RESUMO

Recent studies show that tropical hydroelectric reservoirs may be responsible for substantial greenhouse gas emissions to the atmosphere, yet emissions from the surface of released water downstream of the dam are poorly characterized if not neglected entirely from most assessments. We found that carbon dioxide (CO2) emission downstream of Kariba Dam (southern Africa) varied widely over different timescales and that accounting for downstream emissions and their fluctuations is critically important to the reservoir carbon budget. Seasonal variation was driven by reservoir stratification and the accumulation of CO2 in hypolimnetic waters, while subdaily variation was driven by hydropeaking events caused by dam operation in response to daily electricity demand. This "carbopeaking" resulted in hourly variations of CO2 emission up to 200% during stratification. Failing to account for seasonal or subdaily variations in downstream carbon emissions could lead to errors of up to 90% when estimating the reservoir's annual emissions. These results demonstrate the critical need to include both limnological seasonality and dam operation at subdaily time steps in the assessment of carbon budgeting of reservoirs and carbon cycling along the aquatic continuum.

3.
Sci Rep ; 10(1): 17062, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051511

RESUMO

Both above- and below-ground plant traits are known to modulate feedbacks between vegetation and river morphodynamic processes. However, how they collectively influence vegetation establishment on gravel bars remains less clear. Here we develop a numerical model that couples above- and below-ground vegetation dynamics with hydromorphological processes. The model dynamically links plant growth rate to water table fluctuations and includes plant mortality by uprooting and burial. We considered a realistic hydrological regime and used the model to simulate the coevolution of alternate gravel bars and vegetation that displays trade-offs in investment of above- and below-ground biomass. We found that a balanced plant growth above- and below-ground facilitates vegetation to establish on steady, stable bars, because it allows plants to develop traits that maximise growth performance during low flow periods and thus survival during floods. Regardless of the growth strategy, vegetation could not establish on migrating bars because of large plant loss by uprooting during floods. These findings add on previous studies suggesting that morphodynamic processes play a key role on determining plant trait distributions and highlight the importance of including the dynamics of both above- and below-ground plant traits for predicting shifts between bare and vegetated states in river bars.


Assuntos
Fenômenos Fisiológicos Vegetais , Rios , Biomassa , Simulação por Computador , Ecossistema , Inundações , Sedimentos Geológicos , Hidrodinâmica , Hidrologia , Modelos Biológicos , Desenvolvimento Vegetal
4.
Sci Total Environ ; 579: 1035-1049, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27887836

RESUMO

Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow management in hydropower regulated streams, as it has the potential to quantify the response of different ecosystem services to flow regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA